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Pseudo Random Number Generators 

G:  0,1 𝑚 → 0,1 𝑀 for 𝑀 ≫ 𝑚 

А. Urivskiy, ACCT 2016 

Typical assumptions 
for a cryptographic PRNG: 
• G is efficiently computable 
• the seed is uniformly distributed on 0,1 𝑚    
• G is ‘random-like’: no polynomial statistical 

test can distinguish G from a truly random 
generator with uniform distribution 
(informally)  



Pseudo Random = Unpredictable 
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Predictability problem: predict the next 
output bit for G with probability better than ½ 
if all previously output bits are known 

Next-bit test: G passes the test if the next bit 
cannot be predicted by any polynomial 
predictor. 

Theorem [Yao’82] : if G passes the next-bit 
test it will pass any polynomial statistical test. 



PRNGs based on block ciphers – G1 

G1: 
for i=0 to M do 
  𝑐𝑜𝑢𝑛𝑡 ≔ 𝐼𝑉 + 𝑖  𝑚𝑜𝑑 2𝑛 
 𝑎𝑖 ≔ 𝐸 𝐾, 𝑐𝑜𝑢𝑛𝑡  

𝐸(𝐾, 𝑇) – block cipher 
𝐾 ∈ 𝑉𝑘 – key 
𝑇 ∈ 𝑉𝑛 – message 
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Consider the case  𝑴 < 𝑵 = 𝟐𝒏. 



PRNGs based on block ciphers – G1 

G1 is highly appreciated and widely used – 
ISO/IEC 18031  CTR_DRBG. 

 
However,  if G1 has output a symbol, it will 

never output it again   →  
For 𝑴~ 𝑵 due to the birthday paradox 
becomes distinguishable  from a truly 
random uniform generator. 
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G2: 
for 𝑖 = 0 to M do 
  𝑐𝑜𝑢𝑛𝑡 ≔ 𝐼𝑉 + 𝑖  𝑚𝑜𝑑 2𝑛 
 𝑎𝑖 ≔ 𝐸 𝐾, 𝑐𝑜𝑢𝑛𝑡  ⨁ 𝐸

−1 𝐾, 𝑐𝑜𝑢𝑛𝑡 + 1  

PRNGs based on block ciphers – G2 



+1 

𝑬−𝟏(𝑲, 𝑻 + 𝟏)  𝑬(𝑲, 𝑻)  

IV 

K 
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PRNGs based on block ciphers – G2 
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G2: 
for 𝑖 = 0 to M do 
  𝑐𝑜𝑢𝑛𝑡 ≔ 𝐼𝑉 + 𝑖  𝑚𝑜𝑑 2𝑛 
 𝑎𝑖 ≔ 𝐸 𝐾, 𝑐𝑜𝑢𝑛𝑡  ⨁ 𝐸

−1 𝐾, 𝑐𝑜𝑢𝑛𝑡 + 1  

Will a second cipher help? and how? 

PRNGs based on block ciphers – G2 



Assumption 1: encryption (decryption) 
procedure of an n-bit block cipher with  
a random key is a random permutation 
on 𝑉𝑛 
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Idealized model for PRNGs  

Typical to cryptanalysis: a ‘good’ block cipher 
with a random key must be indistinguishable 
from a random permutation.  

0 1 2 … 2n-2 2n-1 

𝜎(0) 𝜎(1) 𝜎(2) … 𝜎(2n-2) 𝜎(2n-1) 



Idealized model for PRNGs 

𝐸 𝐾, 𝑇 ⊕ 𝐸−1 𝐾, 𝑇 + 1 → 
𝜎1 𝑇 ⊕ 𝜎2(𝑇 + 1)  

𝐸 𝐾, 𝑇 → 𝜎 𝑇  G1I: 

G2I: 
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Assumption 2: encryption and 
decryption procedures of a block cipher 
with the same  random key are 
independent so they are the  two random 
and independent permutations on 𝑉𝑛. 



Does IV matter ? 

𝜎′(𝑖) = 𝜎( 𝑖 + 𝑰𝑽  𝑚𝑜𝑑 2𝑛 ) 

Another choice of IV leads  

to a different  𝜎′ given 𝜎, however from the 
same set: 𝑰𝑽 = 𝟎  
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𝐸 𝐾, 𝑇 ⊕ 𝐸−1 𝐾, 𝑇 + 1 → 
𝜎1 𝑇 ⊕ 𝜎2(𝑇)  

𝐸 𝐾, 𝑇 → 𝜎 𝑇  G1I: 

G2I: 



Output sequences 

G1I: 

  𝑁 ⋅ 𝑁 − 1  ⋅ 𝑁 − 2  ⋅  …  ⋅  2    ⋅     1 = 𝑵! 

G2I:  𝜎 𝑖 = 0
𝑖∈𝑉𝑛

  𝑎𝑖

𝑁−1

𝑖=0

= 𝜎1 𝑖 ⊕ 𝜎2 𝑖 = 0

𝑖∈𝑉𝑛

 

𝑎0,    𝑎1,          𝑎2,         …,  𝑎𝑁−2,  𝑎𝑁−1 

𝑁   ⋅   𝑁   ⋅   𝑁 ⋅ …  ⋅   𝑁   ⋅     1 ≤ 𝑵𝑵−𝟏 

𝑎0,    𝑎1,    𝑎2,  …,  𝑎𝑁−2,  𝑎𝑁−1 
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Theorem (Hall’52). For any sequence 

𝑎0, 𝑎1, … , 𝑎𝑁−1,  𝑎𝑖 ∈ 𝑉𝑛,  𝑖 = 0,1, … , 2
𝑛 − 1, 

satisfying the condition 

 𝑎𝑖

𝑁−1

𝑖=0

= 0 

there exists at least one pair of permutations  

𝜎1, 𝜎2 on 𝑉𝑛 such that 𝑎𝑖 = 𝜎1 𝑖 ⊕ 𝜎2 𝑖 . 

А. Urivskiy, ACCT 2016 

Output sequences 

𝑁   ⋅   𝑁   ⋅   𝑁 ⋅ …  ⋅   𝑁   ⋅     1 = 𝑵𝑵−𝟏 

𝑎0,    𝑎1,    𝑎2,  …,  𝑎𝑁−2,  𝑎𝑁−1 



G1I 
𝜎 𝑐𝑜𝑢𝑛𝑡  

G2I 
𝜎1 𝑐𝑜𝑢𝑛𝑡 ⊕ 𝜎2(𝑐𝑜𝑢𝑛𝑡) 

Type 
all elements 
are different 

any fixed 𝑁 − 1 
elements are arbitrary 

Number (of 
length 𝑁 ) 

𝑁! 𝑁𝑁−1 

𝑁!

𝑁𝑁−1
=
2𝜋𝑁 ⋅ 𝑁𝑁

𝑒𝑁
𝑁

𝑁𝑁
= 𝑒− 𝑁−ln 𝑁 2𝜋𝑁  
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Output sequences: summary 



Equivalent representation for G2I 

0 1 2 3 … 𝑁 − 1 

0 

𝐌 = 

0 1 2 3 … 𝑁 − 1 

1 1 0 3 2 … 𝑁 − 2 

2 2 3 0 1 … 𝑁 − 3 

3 3 2 1 0 … 𝑁 − 4 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

𝑁 − 1 𝑁 − 1 𝑁 − 2 𝑁 − 3 𝑁 − 4 … 0 
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⊕ 



Definition. A sequence of pairs of indices 

𝑖0, 𝑗0 , 𝑖1, 𝑗1 , … , (𝑖𝑁−1, 𝑗𝑁−1),  𝑖𝑙, 𝑗𝑙 ∈ {0,1, … ,𝑁 − 1}, 

𝑖𝑘 ≠ 𝑖𝑡, 𝑗𝑘 ≠ 𝑗𝑡 for any 𝑡 ≠ 𝑘 is called a trajectory on 𝐌. 
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Equivalent representation for G2I 

Definition.  The sequence 

𝐌 𝑖0, 𝑗0 , 𝐌 𝑖1, 𝑗1 , … ,𝐌(𝑖𝑁−1, 𝑗𝑁−1) is called the output 

of the trajectory 𝑖0, 𝑗0 , 𝑖1, 𝑗1 , … , (𝑖𝑁−1, 𝑗𝑁−1) 
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Equivalent representation for G2I 

Proposition. Between 
the set of ordered pairs of permutations on 𝑉𝑛 and 
the set of trajectories on matrix 𝐌 
a one-to-one correspondence can be defined so that 
the sum of the pair of permutations will coincide with 
the output of the corresponding trajectory. 

Corollary. The generation process is: the s-th output 
symbol 𝑎𝑠 is chosen randomly from 𝐌.  
After that the row and the column containing 𝑎𝑠  
are struck out from 𝐌. 



Equivalent representation for G2I 

𝐌 = 

0 1 2 3 … 𝑁 − 1 

1 0 3 2 … 𝑁 − 2 

2 3 0 1 … 𝑁 − 3 

3 2 1 0 … 𝑁 − 4 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

𝑁 − 1 𝑁 − 2 𝑁 − 3 𝑁 − 4 … 0 
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Equivalent representation for G2I 

𝐌 = 

0 1 2 3 … 𝑁 − 1 

1 0 3 2 … 𝑁 − 2 

2 3 0 1 … 𝑁 − 3 

3 2 1 0 … 𝑁 − 4 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

𝑁 − 1 𝑁 − 2 𝑁 − 3 𝑁 − 4 … 0 
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𝑎0 = 3 

2,1 ,  



Equivalent representation for G2I 

𝐌 = 

0 1 2 3 … 𝑁 − 1 

1 0 3 2 … 𝑁 − 2 

2 3 0 1 … 𝑁 − 3 

3 2 1 0 … 𝑁 − 4 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

𝑁 − 1 𝑁 − 2 𝑁 − 3 𝑁 − 4 … 0 
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𝑎0 = 3 

2,1 ,  



Equivalent representation for G2I 

𝐌 = 

0 1 2 3 … 𝑁 − 1 

1 0 3 2 … 𝑁 − 2 

2 3 0 1 … 𝑁 − 3 

3 2 1 0 … 𝑁 − 4 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

𝑁 − 1 𝑁 − 2 𝑁 − 3 𝑁 − 4 … 0 
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𝑎0 = 3, 𝑎1 = 2 

2,1 ,    (1,3) 



Equivalent representation for G2I 

𝐌 = 

0 1 2 3 … 𝑁 − 1 

1 0 3 2 … 𝑁 − 2 

2 3 0 1 … 𝑁 − 3 

3 2 1 0 … 𝑁 − 4 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

𝑁 − 1 𝑁 − 2 𝑁 − 3 𝑁 − 4 … 0 
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𝑎0 = 3, 𝑎1 = 2 

2,1 ,    (1,3) 



Equivalent representation for G2I 

𝐌 = 

0 1 2 3 … 𝑁 − 1 

1 0 3 2 … 𝑁 − 2 

2 3 0 1 … 𝑁 − 3 

3 2 1 0 … 𝑁 − 4 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

𝑁 − 1 𝑁 − 2 𝑁 − 3 𝑁 − 4 … 0 
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𝑎0 = 3, 𝑎1 = 2, 𝑎2 = 𝑁 − 3 

2,1 ,    (1,3),     (N-1,2) 



Equivalent representation for G2I 

𝐌 = 

0 1 2 3 … 𝑁 − 1 

1 0 3 2 … 𝑁 − 2 

2 3 0 1 … 𝑁 − 3 

3 2 1 0 … 𝑁 − 4 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

𝑁 − 1 𝑁 − 2 𝑁 − 3 𝑁 − 4 … 0 
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𝑎0 = 3, 𝑎1 = 2, 𝑎2 = 𝑁 − 3 

2,1 ,    (1,3),     (N-1,2) 



Conditional probability 
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Conditional probability 𝑃 𝑎𝑠 𝑎𝑠−1, 𝑎𝑠−2, … , 𝑎0  
is the probability for a generator to output 𝑎𝑠 
provided 𝑎𝑠−1, 𝑎𝑠−2, … , 𝑎0 were output before. 

To estimate 𝑃 𝑎𝑠 𝑎𝑠−1, 𝑎𝑠−2, … , 𝑎0  for G2I  
it suffices to estimate how many 𝑎𝑠 are left in 𝐌  
after s rows and columns were struck out. 



Conditional probability 

G1I 

𝑃 𝑎𝑠 𝑎𝑠−1, 𝑎𝑠−2, … , 𝑎0 = 

0 

1

𝑁 − 𝑠
 

if 𝑎𝑠 ∈ {𝑎𝑠−1, 𝑎𝑠−2, … , 𝑎0}; 

otherwise. 

𝑷𝟏 =
𝑵− 𝟐𝒔

𝑵 − 𝒔 𝟐
≤ 𝑷 𝒂𝒔 𝒂𝒔−𝟏, 𝒂𝒔−𝟐, … , 𝒂𝟎 ≤

𝑵− 𝒔

𝑵 − 𝒔 𝟐
= 𝑷𝟐 

𝑷𝟏 <
𝟏

𝑵
< 𝑷𝟐 

, 

, 

А. Urivskiy, ACCT 2016 

G2I 



Conditional probability: summary 

G1I 
𝜎 𝑐𝑜𝑢𝑛𝑡  

G2I 
𝜎1 𝑐𝑜𝑢𝑛𝑡 ⊕ 𝜎2(𝑐𝑜𝑢𝑛𝑡) 

Ideal 

Lower 
bound 

𝟎  
𝑵− 𝟐𝒔

𝑵 − 𝒔 𝟐
 

𝟏

𝑵
 

Number of 
symbols 

𝒔 ≤ 𝑵− 𝒔 𝑵 

Upper 
bound 

𝟏

𝑵−𝒔
  

𝟏

𝑵−𝒔
  

𝟏

𝑵
 

Number of 
symbols 

𝑵− 𝒔 ≤ 𝒔 𝑵 
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Thank you!  
Questions? 
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