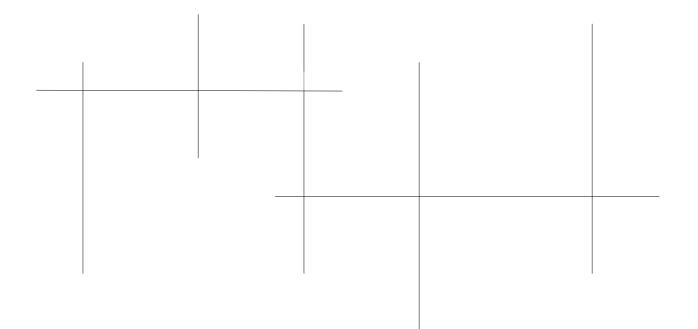
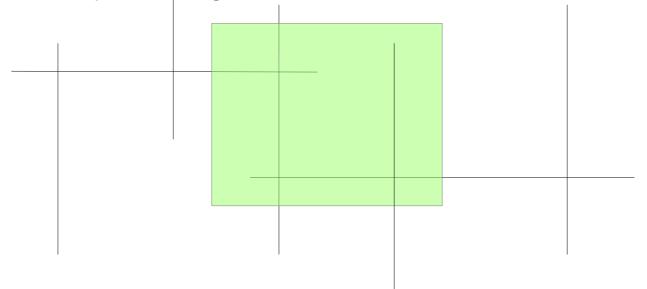
A Data Structure for Dynamic **Segment Intersection** Kalina Petrova Department of Computer Science, Princeton University **Robert Tarjan** Department of Computer Science, Princeton University, and Intertrust Technologies

Given a set of axis-aligned segments in the plane, support the following operations

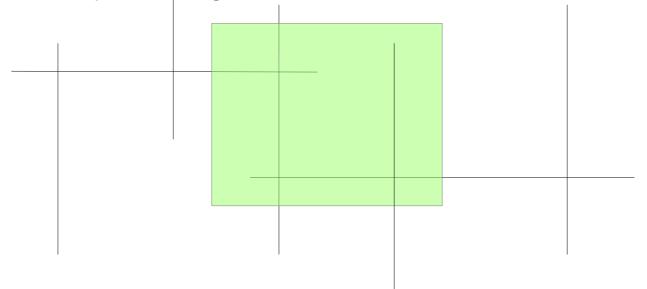
• Insertion: insert a new segment



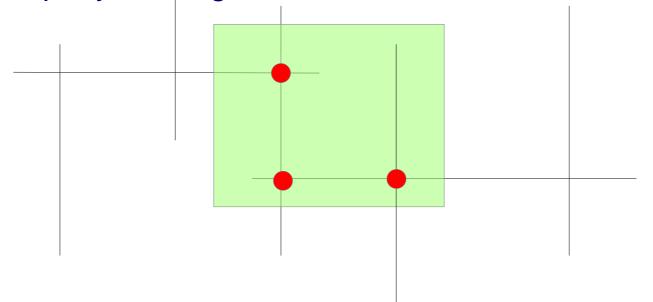
- Insertion: insert a new segment
- Query: report all pairwise intersection points of segments inside a query rectangle



- Insertion: insert a new segment
- Query: report all pairwise intersection points of segments inside a query rectangle



- Insertion: insert a new segment
- Query: report all pairwise intersection points of segments inside a query rectangle



Desired properties

- Small time complexity of insertion
- Small time complexity of query
- Small preprocessing time
- Small space complexity

Related work Static version of the problem

Finding Pairwise Intersections Inside a Query Range

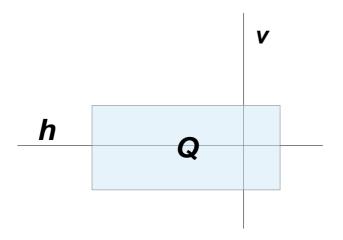
- by Mark de Berg, Joachim Gudmundsson, and Ali
 D. Mehrabi
- Supports only queries, not insertions

Outline

- Problem statement
- Static version of the problem
- Reduction of the dynamic version to a different problem
- Solution
- Results
- Conclusion

Approach for the static case

- Construct a set $O^*(Q)$: • If $h \cap v \in Q$, $h \in O^*(Q)$ or $v \in O^*(Q)$. • For each $s \in O^*(Q)$:
 - Find all segments $t: s \cap Q \cap t \neq \emptyset$ using a multidimensional range tree.



Approach for the static case

Construct a set O^{*}(Q):
If h ∩ v ∈ Q, h ∈ O^{*}(Q) or v ∈ O^{*}(Q).
For each s ∈ O^{*}(Q):
✓ Find all segments t: s ∩ Q ∩ t ≠ Ø using a multidimensional range tree.

Easy: See [de Berg, Gudmundsson, <u>h</u> and Mehrabi, <u>Q</u> 2015]

Approach for the static case Witness points W:

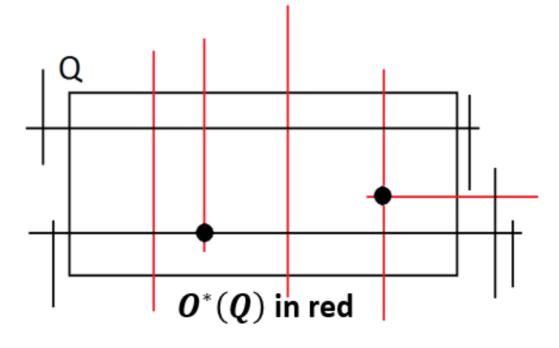
- ∀ v, the topmost and bottommost intersection points of v, w₁, w₂ ∈ W
 (s_{w1} = v, s_{w2} = v)
- \forall *h*, the leftmost and rightmost intersection points of *h*, *w*₁, *w*₂ \in *W*

$$(s_{w_1} = h, s_{w_2} = h)$$

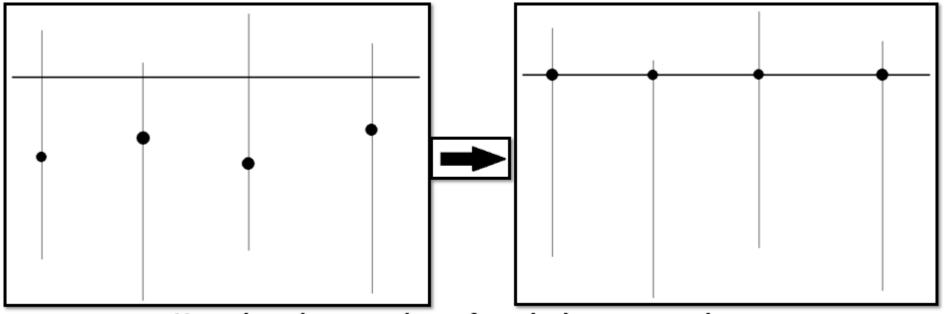
Approach for the static case

 $oldsymbol{0}^*(oldsymbol{Q})$ contains:

- $\{s_w | w \in Q, w \in W\}$ (each segment that has an associated witness point in Q)
- All segments that intersect Q entirely from top to bottom (only if there are segments that intersect Q entirely from left to right)



Approach for the dynamic case Insertion of a new horizontal segment



How the witness points of vertical segments change as a result of the insertion of a new horizontal segment

Representing segments with witness points as points in 3D space

X

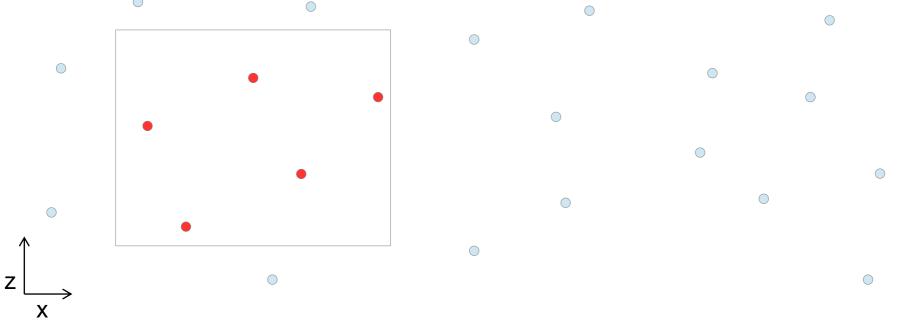
У

Ζ

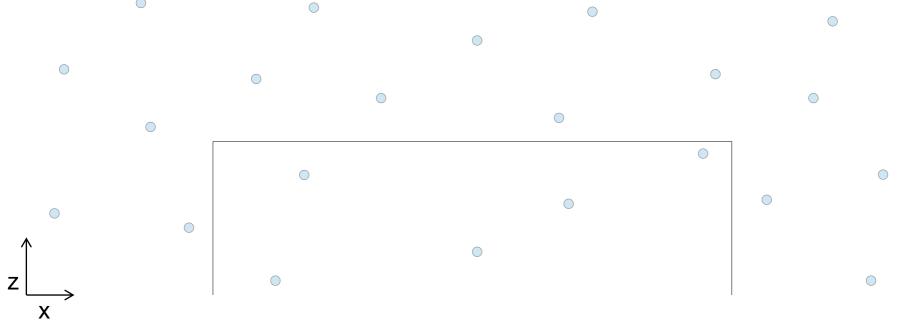
[•] Insert a point (x, y, z).

(insertion)

- Insert a point (x, y, z).
- Report all points in the box $[x_1, x_2] \times (-\infty, \infty) \times [z_1, z_2]$. (query)



- Insert a point (x, y, z).
- Report all points in the box $[x_1, x_2] \times (-\infty, \infty) \times [z_1, z_2]$.



- Insert a point (x, y, z).
- Report all points in the box $[x_1, x_2] \times (-\infty, \infty) \times [z_1, z_2]$.
- For all points (x, y, z) in the box [x₁, x₂] × (y₁, ∞) × [-∞, z₂], change z to z₂.

- Insert a point (x, y, z).
- Report all points in the box $[x_1, x_2] \times (-\infty, \infty) \times [z_1, z_2]$.
- For all points (x, y, z) in the box [x₁, x₂] × (y₁, ∞) × [-∞, z₂], change z to z₂.

- Insert a point (x, y, z).
- Report all points in the box $[x_1, x_2] \times (-\infty, \infty) \times [z_1, z_2]$.
- For all points (x, y, z) in the box [x₁, x₂] × (y₁, ∞) × [-∞, z₂], change z to z₂.

Data Structure

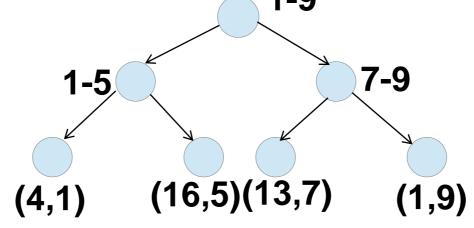
- K-d tree
- AVL range trees [Lamoureux, 1995]
- The binary static to dynamic transformation

[Saxe and Bentley, 1979]

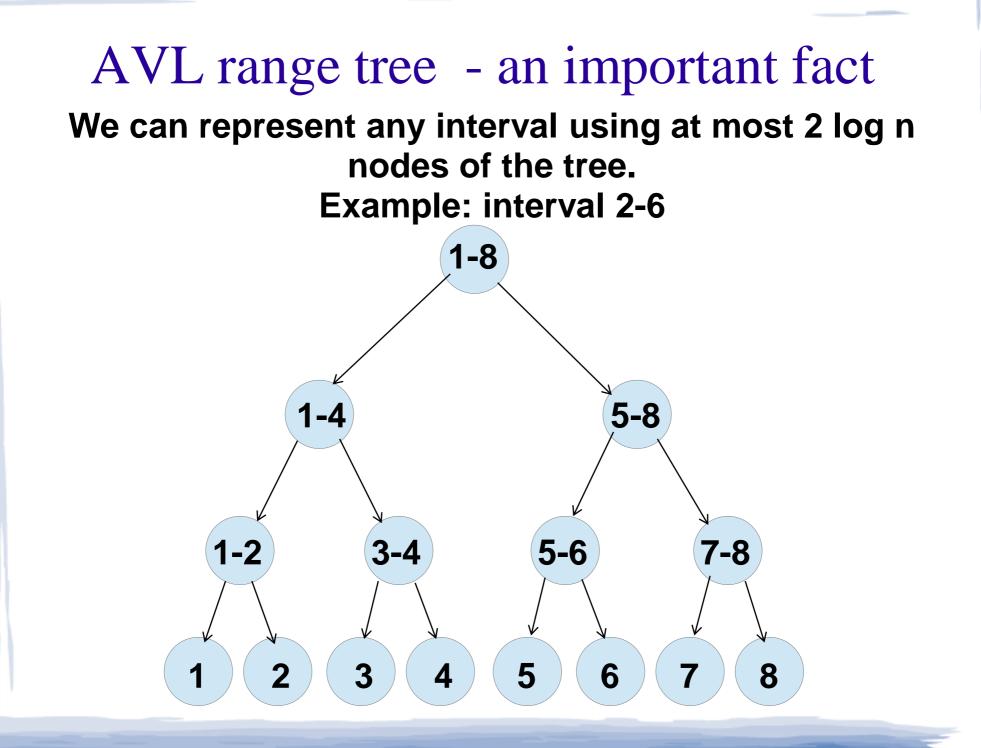
• Potential function analysis

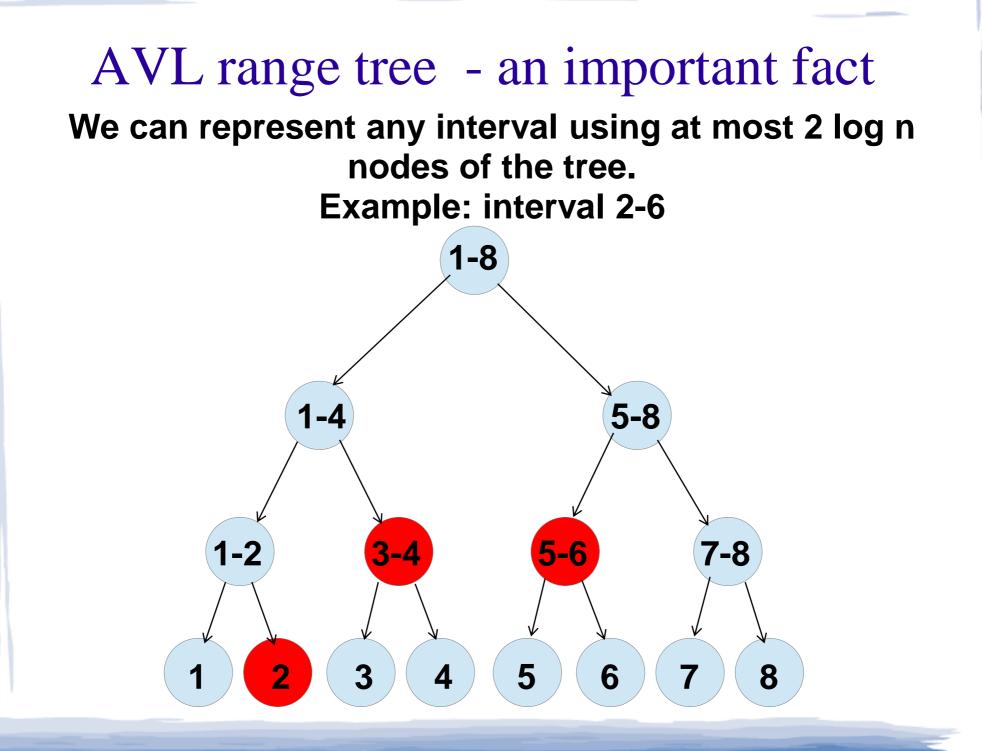
AVL range tree

- Space-partitioning data structure for organizing points by one of their dimensions
- Dynamic, balanced
- Insertion, deletion, search $-0(\log n)$



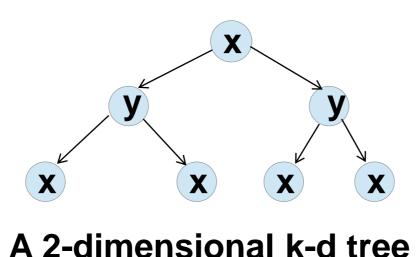
A range tree organized by the y coordinate





K-d tree

- Space-partitioning data structure for organizing points in k-dimensional space
- Used to store a set of points
- Partitioning alternating between the dimensions



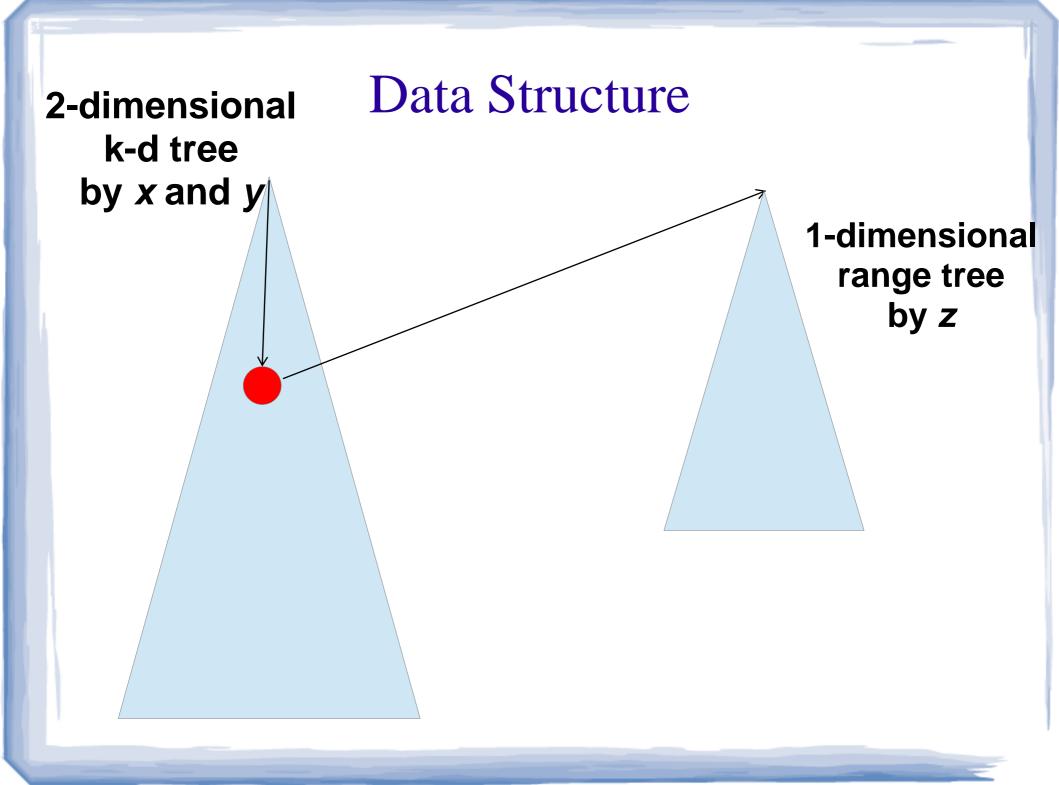
K-d tree Operations

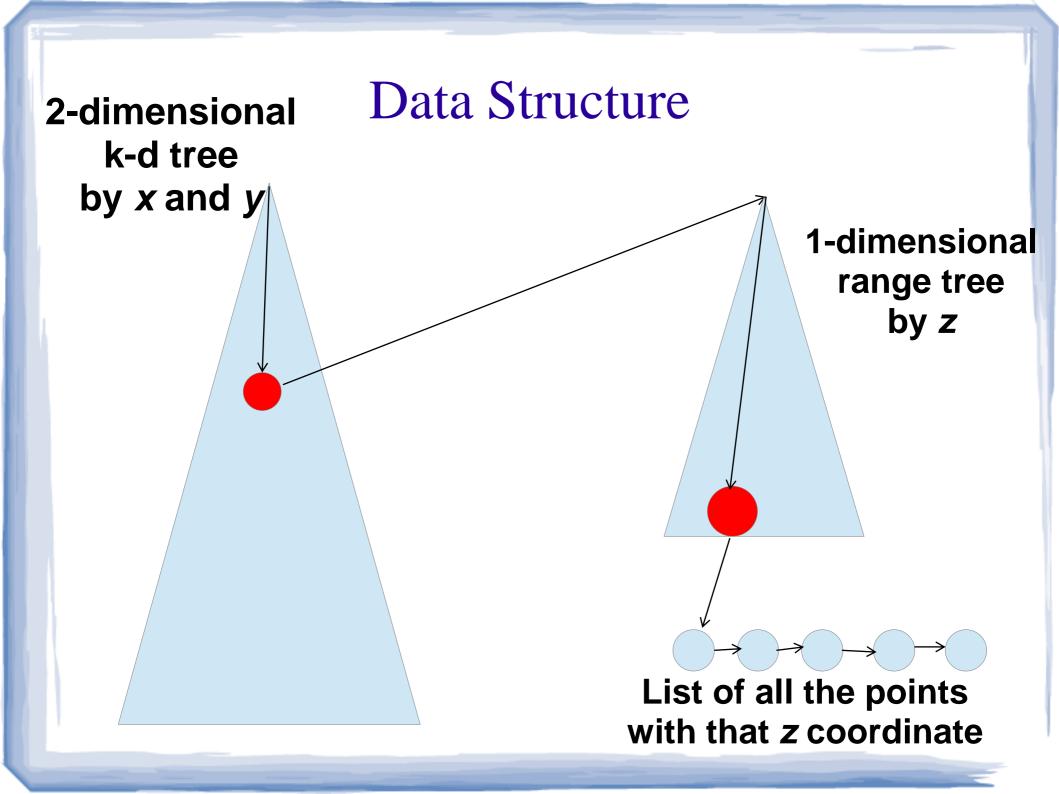
Search - O(n^{1/d}), where d is the number of .dimensions
Preprocessing time - O(n log n)
Static!

K-d tree: an important fact

• We can represent any interval using square root of *n* nodes of the tree.

2-dimensional k-d tree by x and y Data Structure

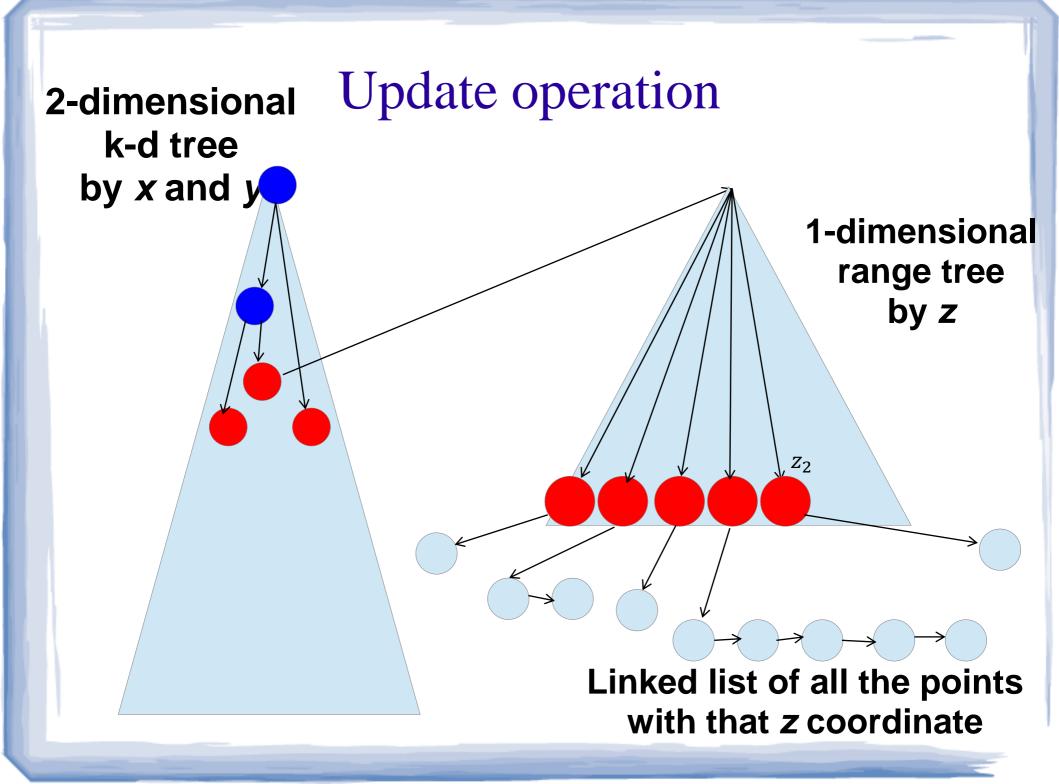


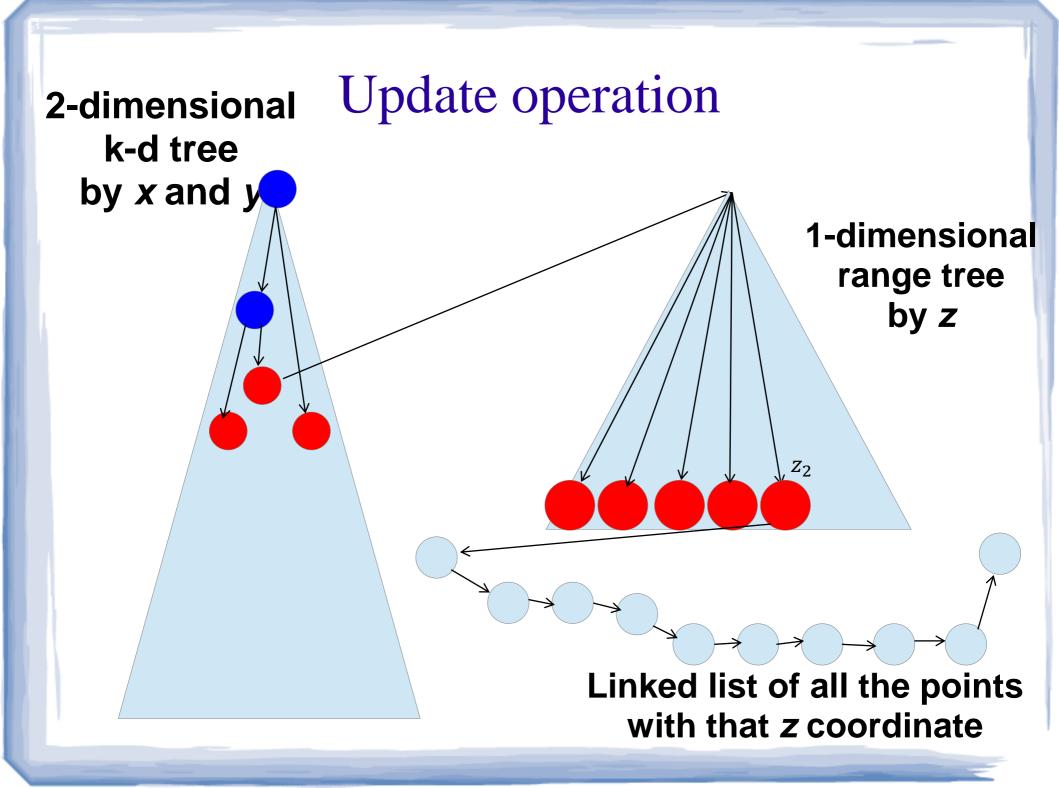


Update operation

Update: For all points in the interval $\begin{bmatrix} x_{1,}x_{2} \end{bmatrix}$; $\begin{bmatrix} y_{1,} \infty \end{bmatrix}$; $\begin{bmatrix} -\infty, z_{2} \end{bmatrix}$ increase their *z* coordinate to z_{2} .

Step 1: Divide the interval $[x_1,x_2]; [y_1,\infty]$ in $n^{1/2}$ nodes of the k-d tree. For each such node and each of their ancestors, handle the range tree that corresponds to them by moving the contents of each leaf one by one.

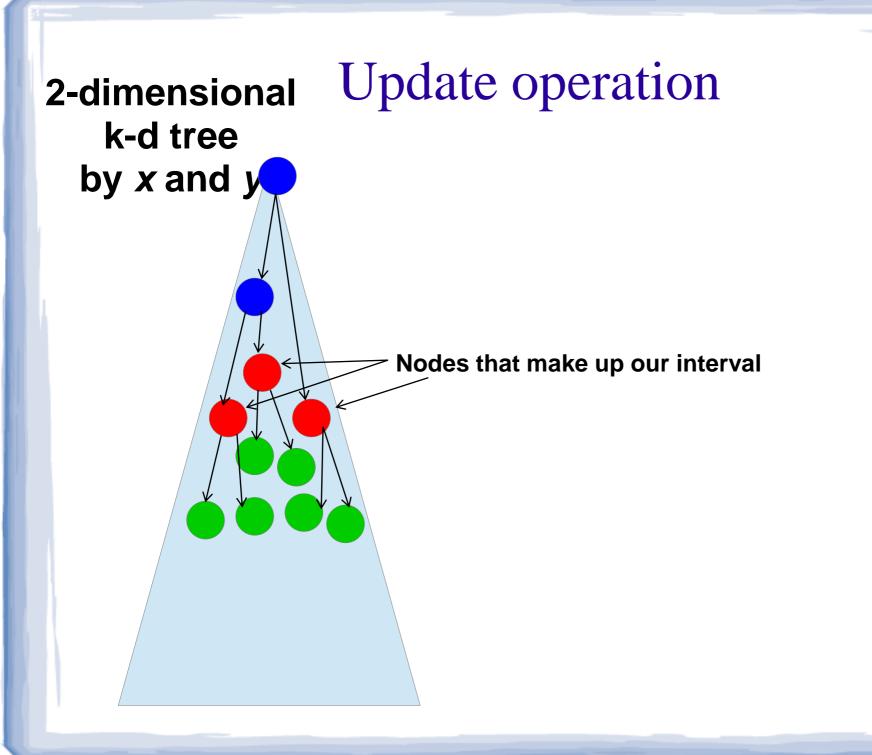


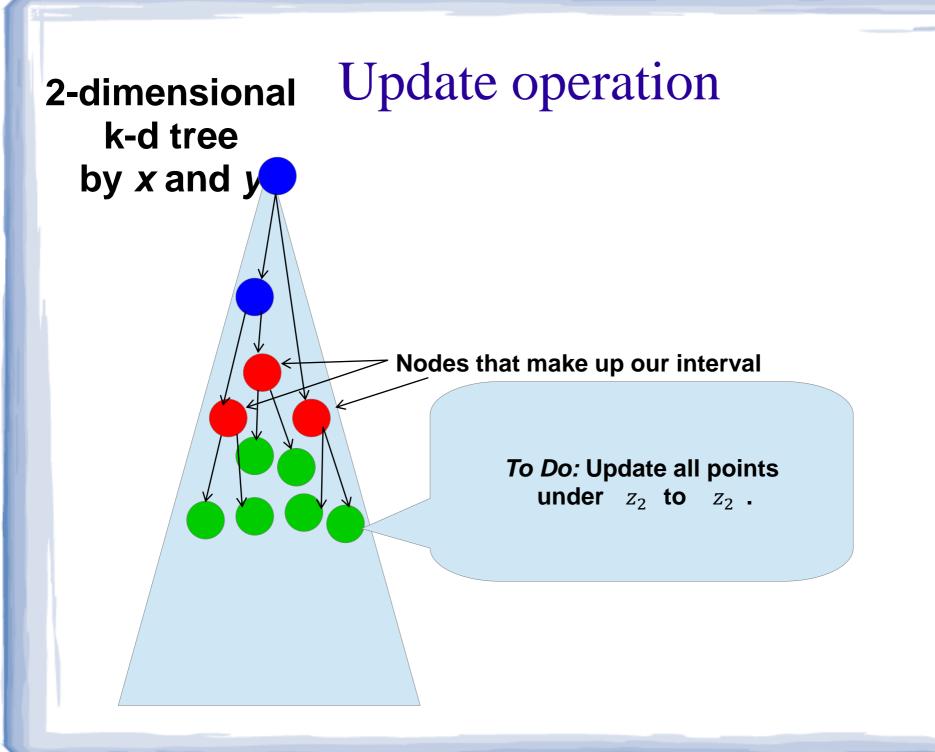


Update operation

Update: For all points in the interval $\begin{bmatrix} x_{1,}x_2 \end{bmatrix}$; $\begin{bmatrix} y_{1,} \infty \end{bmatrix}$; $\begin{bmatrix} -\infty, z_2 \end{bmatrix}$ increase their *z* coordinate to z_2 .

Step 2: For each of the children of these nodes, update the To Do label.





Problem

K-d trees are static, and we might need to insert new points!

Solution – the binary static to dynamic transformation

- Due to Saxe and Benteley, 1979
- O(log n) overhead for each operation

The binary static to dynamic transformation – how it works

- Suppose the static data structure is of type A.
- Keep at most *log n* data structures of type A, dividing the points in them in powers of 2.
- 19 points \rightarrow
- 16 points in A1, 2 points in A2, 1 point in A3.

The binary static to dynamic transformation – how it works

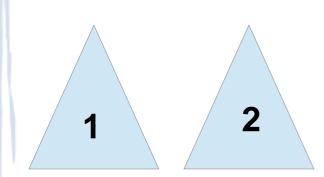
- Suppose the static data structure is of type A.
- Keep at most *log n* data structures of type A, dividing the points in them in powers of 2.
- 19 points \rightarrow

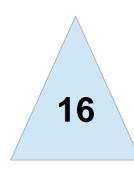
2

• 16 points in A1, 2 points in A2, 1 point in A3.

16

- Suppose we insert a new point now:
- Destroy some of the data structures as necessary to create a new one with all of their points plus the new one.





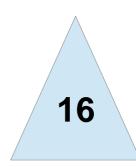
• Suppose we insert a new point now:

2

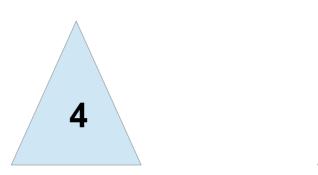
• Destroy some of the data structures as necessary to create a new one with all of their points plus the new one.

16

- Suppose we insert a new point now:
- Destroy some of the data structures as necessary to create a new one with all of their points plus the new one.



- Suppose we insert a new point now:
- Destroy some of the data structures as necessary to create a new one with all of their points plus the new one.



16

Notation The Point Projection Problem

Total number of pointsNNumber of update operationsMNumber of points reported in a queryK

Results The Point Projection Problem

	2D case	3D case
Query	$O(\log N \log(N+M) + K)$	$O(\sqrt{N}\log_{(}N+M)+K)$
Insertion	$O(\log^2 N \log(N+M))$	$O(\sqrt{N}\log^2 N \log(N+M))$
Update	$O(\log^2 N \log(N+M))$	$O(\sqrt{N}\log^2 N \log(N+M))$
Storage	$O(N \log N \log(N + M))$	$O(N \log N \log(N + M))$
Preprocessing time	$O(N\log^2 N\log(N+M))$	$O(N\sqrt{N}\log^2 N\log(N+M))$

Notation The Segment Intersection Problem

Number of segments nNumber of points reported in a query k

Results

The Segment Intersection Problem

	Static	Dynamic Trivial solution 1	Dynamic Trivial solution 2	Dynamic Our solution
Query	$O((k+1)\log n\log^* n)$	$O(\log^2 n + k)$	$\Omega(n\log n)$	$O(\sqrt{n}\log n + k\log^3 n)$
Insertion	Not supported	$\Omega(n\log^3 n)$	O(1)	$O(\sqrt{n}\log^3 n)$
Storage	$O(n \log n)$	$O(n\log^2 n)$	$O(n \log n)$	$O(n \log^2 n)$
Pre- pro- cessing time	$O(n \log n)$	$O(n\log^2 n)$	O(n)	$O(n\sqrt{n}\log^3 n)$

Conclusions

- Goal: designing a data structure that supports a set of axis-aligned segments and the following operations on them:
 - Insert a new segment
 - Report all intersection points of pairs of segments inside a query rectangle

Conclusions

- Goal: designing a data structure that supports a set of axis-aligned segments and the following operations on them:
 - Insert a new segment
 - Report all intersection points of pairs of segments inside a query rectangle
- Results:
 - sublinear time complexity of both operations, subquadratic storage space and subquadratic preprocessing time

Future work

• Getting rid of the square root of *n* factor

Future work

- Getting rid of the square root of *n* factor
- Handling axis-aligned rectangles

Future work

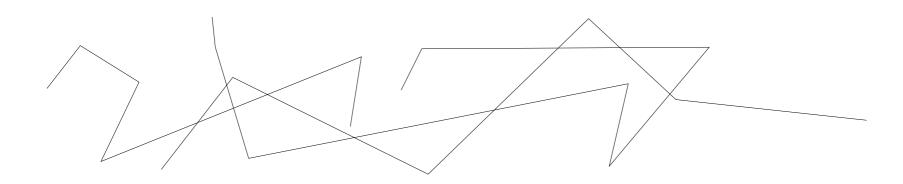
- Getting rid of the square root of *n* factor
- Handling axis-aligned rectangles
- Handling deletions of segments

Future work Long-term goals

• Handling segments with arbitrary orientation

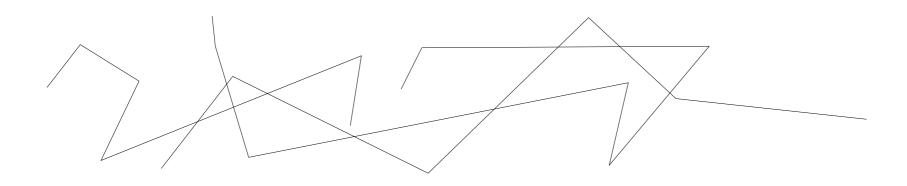
Future work Long-term goals

- Handling segments with arbitrary orientation
- Handling sequences of segments



Future work Long-term goals

- Handling segments with arbitrary orientation
- Handling sequences of segments



• Handling intersections of curves

Thank you for your attention!

