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Desired properties 

● Small time complexity of insertion 

● Small time complexity of query 

● Small preprocessing time 

● Small space complexity 



Related work 

Static version of the problem 

Finding Pairwise Intersections Inside a Query Range 

● by Mark de Berg, Joachim Gudmundsson, and Ali 

D. Mehrabi 

● Supports only queries, not insertions 



Outline 

● Problem statement 

● Static version of the problem 

● Reduction of the dynamic version to a different 

problem 

● Solution 

● Results 

● Conclusion 
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Gudmundsson, 
and Mehrabi, 

2015] 
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Approach for the dynamic case 

Insertion of a new horizontal segment 



Representing segments with witness points 

as points in 3D space 
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Data Structure 

● K-d tree 

● AVL range trees 

● The binary static to dynamic transformation 

 

● Potential function analysis 

 [Lamoureux, 1995] 

[Saxe and Bentley, 1979] 



AVL range tree 

● Space-partitioning data structure for organizing 

points by one of their dimensions 

● Dynamic, balanced 

● Insertion, deletion, search – O(log n) 

(16,5) (4,1) (13,7) (1,9) 

A range tree organized by the y coordinate 

1-5 7-9 

1-9 
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K-d tree 

● Space-partitioning data structure for organizing 

points in k-dimensional space 

● Used to store a set of points 

● Partitioning alternating between the dimensions 

x 

x x x x 

y y 

A 2-dimensional k-d tree 



K-d tree 

Operations 

●Search – O(      ), where d is the number of 
●dimensions 
●Preprocessing time – O(n log n) 
●Static! 

𝑛1 𝑑  



K-d tree: an important fact 

● We can represent any interval using square root of 

n nodes of the tree. 
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by x and y 
1-dimensional 

range tree 
by z 

List of all the points 
with that z coordinate 



Update operation 

𝑥1,𝑥2 ; 𝑦1,∞ ; −∞, 𝑧2  Update: For all points in the interval                                     , 
increase their z coordinate to    . 
 
Step 1: Divide the interval                       in        nodes of the k-d 
tree. For each such node and each of their ancestors, handle 
the range tree that corresponds to them by moving the contents 
of each leaf one by one.   

𝑧2 

𝑥1,𝑥2 ; 𝑦1,∞  𝑛1 2  
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Update operation 

𝑥1,𝑥2 ; 𝑦1,∞ ; −∞, 𝑧2  Update: For all points in the interval                                     , 
increase their z coordinate to    . 
 
Step 2: For each of the children of these nodes, update the 
To Do label. 

𝑧2 
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Update operation 2-dimensional 
k-d tree 

by x and y 

Nodes that make up our interval 

To Do: Update all points 
 under         to         . 𝑧2 𝑧2 



Problem 

K-d trees are static, and we might need to insert new 

points! 



Solution – the binary static to dynamic 

transformation 

● Due to Saxe and Benteley, 1979 

● O(log n) overhead for each operation 



The binary static to dynamic 

transformation – how it works 

● Suppose the static data structure is of type A. 

● Keep at most log n data structures of type A, 

dividing the points in them in powers of 2. 

● 19 points → 

● 16 points in A1, 2 points in A2, 1 point in A3. 
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The binary static to dynamic 

transformation 

Insertion of a new point 

● Suppose we insert a new point now: 

● Destroy some of the data structures as necessary to 

create a new one with all of their points plus the 
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Conclusions 

● Goal: designing a data structure that supports a set 

of axis-aligned segments and the following 

operations on them: 

– Insert a new segment 

– Report all intersection points of pairs of segments 

inside a query rectangle 

● Results: 

– sublinear time complexity of both operations, 

subquadratic storage space and subquadratic 

preprocessing time 
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● Handling intersections of curves 



Thank you for your attention! 
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Handling To Do labels 
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