
A Data Structure for Dynamic

Segment Intersection

Kalina Petrova

Department of Computer Science, Princeton University

Robert Tarjan

Department of Computer Science, Princeton University,

and Intertrust Technologies

Problem Statement

The Segment Intersection Problem

Given a set of axis-aligned segments in the plane, support the

following operations

Problem Statement

The Segment Intersection Problem

Given a set of axis-aligned segments in the plane, support the

following operations

● Insertion: insert a new segment

Problem Statement

The Segment Intersection Problem

Given a set of axis-aligned segments in the plane, support the

following operations

● Insertion: insert a new segment

● Query: report all pairwise intersection points of segments

inside a query rectangle

Problem Statement

The Segment Intersection Problem

Given a set of axis-aligned segments in the plane, support the

following operations

● Insertion: insert a new segment

● Query: report all pairwise intersection points of segments

inside a query rectangle

Problem Statement

The Segment Intersection Problem

Given a set of axis-aligned segments in the plane, support the

following operations

● Insertion: insert a new segment

● Query: report all pairwise intersection points of segments

inside a query rectangle

Desired properties

● Small time complexity of insertion

● Small time complexity of query

● Small preprocessing time

● Small space complexity

Related work

Static version of the problem

Finding Pairwise Intersections Inside a Query Range

● by Mark de Berg, Joachim Gudmundsson, and Ali

D. Mehrabi

● Supports only queries, not insertions

Outline

● Problem statement

● Static version of the problem

● Reduction of the dynamic version to a different

problem

● Solution

● Results

● Conclusion

Approach for the static case

Q

v

h

Approach for the static case

Q

v

h

Easy: See [de
Berg,

Gudmundsson,
and Mehrabi,

2015]

Approach for the static case

Approach for the static case

Approach for the dynamic case

Insertion of a new horizontal segment

Representing segments with witness points

as points in 3D space

x

y

z

The Core of the Problem

The Point Projection Problem

x

z

The Core of the Problem

The Point Projection Problem

x

z

(insertion)

The Core of the Problem

The Point Projection Problem

x

z

(query)

The Core of the Problem

The Point Projection Problem

x

z

The Core of the Problem

The Point Projection Problem

z

x

(update)

The Core of the Problem

The Point Projection Problem

z

x

The Core of the Problem

The Point Projection Problem

z

x

Data Structure

● K-d tree

● AVL range trees

● The binary static to dynamic transformation

● Potential function analysis

 [Lamoureux, 1995]

[Saxe and Bentley, 1979]

AVL range tree

● Space-partitioning data structure for organizing

points by one of their dimensions

● Dynamic, balanced

● Insertion, deletion, search – O(log n)

(16,5) (4,1) (13,7) (1,9)

A range tree organized by the y coordinate

1-5 7-9

1-9

AVL range tree - an important fact

1 2 3 4 5 6 7 8

1-2 3-4 5-6 7-8

1-4 5-8

1-8

We can represent any interval using at most 2 log n
nodes of the tree.

Example: interval 2-6

AVL range tree - an important fact

1 2 3 4 5 6 7 8

1-2 3-4 5-6 7-8

1-4 5-8

1-8

We can represent any interval using at most 2 log n
nodes of the tree.

Example: interval 2-6

K-d tree

● Space-partitioning data structure for organizing

points in k-dimensional space

● Used to store a set of points

● Partitioning alternating between the dimensions

x

x x x x

y y

A 2-dimensional k-d tree

K-d tree

Operations

●Search – O(), where d is the number of
●dimensions
●Preprocessing time – O(n log n)
●Static!

𝑛1 𝑑

K-d tree: an important fact

● We can represent any interval using square root of

n nodes of the tree.

Data Structure 2-dimensional
k-d tree

by x and y

Data Structure 2-dimensional
k-d tree

by x and y
1-dimensional

range tree
by z

Data Structure 2-dimensional
k-d tree

by x and y
1-dimensional

range tree
by z

List of all the points
with that z coordinate

Update operation

𝑥1,𝑥2 ; 𝑦1,∞ ; −∞, 𝑧2 Update: For all points in the interval ,
increase their z coordinate to .

Step 1: Divide the interval in nodes of the k-d
tree. For each such node and each of their ancestors, handle
the range tree that corresponds to them by moving the contents
of each leaf one by one.

𝑧2

𝑥1,𝑥2 ; 𝑦1,∞ 𝑛1 2

Update operation 2-dimensional
k-d tree

by x and y
1-dimensional

range tree
by z

Linked list of all the points
with that z coordinate

𝑧2

Update operation 2-dimensional
k-d tree

by x and y
1-dimensional

range tree
by z

Linked list of all the points
with that z coordinate

𝑧2

Update operation

𝑥1,𝑥2 ; 𝑦1,∞ ; −∞, 𝑧2 Update: For all points in the interval ,
increase their z coordinate to .

Step 2: For each of the children of these nodes, update the
To Do label.

𝑧2

Update operation 2-dimensional
k-d tree

by x and y

Nodes that make up our interval

Update operation 2-dimensional
k-d tree

by x and y

Nodes that make up our interval

To Do: Update all points
 under to . 𝑧2 𝑧2

Problem

K-d trees are static, and we might need to insert new

points!

Solution – the binary static to dynamic

transformation

● Due to Saxe and Benteley, 1979

● O(log n) overhead for each operation

The binary static to dynamic

transformation – how it works

● Suppose the static data structure is of type A.

● Keep at most log n data structures of type A,

dividing the points in them in powers of 2.

● 19 points →

● 16 points in A1, 2 points in A2, 1 point in A3.

The binary static to dynamic

transformation – how it works

● Suppose the static data structure is of type A.

● Keep at most log n data structures of type A,

dividing the points in them in powers of 2.

● 19 points →

● 16 points in A1, 2 points in A2, 1 point in A3.

1 2 16

The binary static to dynamic

transformation

Insertion of a new point

● Suppose we insert a new point now:

● Destroy some of the data structures as necessary to

create a new one with all of their points plus the

new one.

1 2 16

The binary static to dynamic

transformation

Insertion of a new point

● Suppose we insert a new point now:

● Destroy some of the data structures as necessary to

create a new one with all of their points plus the

new one.

2 16

The binary static to dynamic

transformation

Insertion of a new point

● Suppose we insert a new point now:

● Destroy some of the data structures as necessary to

create a new one with all of their points plus the

new one.

16

The binary static to dynamic

transformation

Insertion of a new point

● Suppose we insert a new point now:

● Destroy some of the data structures as necessary to

create a new one with all of their points plus the

new one.

16 4

Notation

The Point Projection Problem

Results

The Point Projection Problem

Notation

The Segment Intersection Problem

Results

The Segment Intersection Problem

Conclusions

● Goal: designing a data structure that supports a set

of axis-aligned segments and the following

operations on them:

– Insert a new segment

– Report all intersection points of pairs of segments

inside a query rectangle

Conclusions

● Goal: designing a data structure that supports a set

of axis-aligned segments and the following

operations on them:

– Insert a new segment

– Report all intersection points of pairs of segments

inside a query rectangle

● Results:

– sublinear time complexity of both operations,

subquadratic storage space and subquadratic

preprocessing time

Future work

● Getting rid of the square root of n factor

Future work

● Getting rid of the square root of n factor

● Handling axis-aligned rectangles

Future work

● Getting rid of the square root of n factor

● Handling axis-aligned rectangles

● Handling deletions of segments

Future work

Long-term goals

● Handling segments with arbitrary orientation

Future work

Long-term goals

● Handling segments with arbitrary orientation

● Handling sequences of segments

Future work

Long-term goals

● Handling segments with arbitrary orientation

● Handling sequences of segments

● Handling intersections of curves

Thank you for your attention!

Motivation – motion planning

Motivation – motion planning

Motivation – motion planning

Motivation – motion planning

Motivation – motion planning

Motivation – motion planning

Motivation – motion planning

Update operation 2-dimensional
k-d tree

by x and y

Nodes that make up our interval

5

10

Suppose = 8 𝑧2

Update operation 2-dimensional
k-d tree

by x and y

Nodes that make up our interval

8

10

Suppose = 8 𝑧2

Handling To Do labels
2-dimensional

k-d tree
by x and y 1-dimensional

range tree
by z

𝑧

To Do: z

Handling To Do labels
2-dimensional

k-d tree
by x and y

1-dimensional
range tree

by z

𝑧

To Do: z

To Do: z

To Do: z

