Obtaining reliability values from nonparametric receiver: the "optimal" parameter choice

> Dmitry Osipov IITP RAS

ITP RAS

Coded transmission

- Bijective mapping (Kautz-Singleton construction)
- Appending zero-matrix
- Column–wise permutation

Detection problem

- Detection problem:
- Given: a qXn matrix of decision statistics
- Problem: to find elements corresponding to the transmitted codeword
- Solution sketch: two stages
- Decision matrix computation
- Decoding
- Decision matrix is essentially a matrix of reliabilities

Decoding

Decision matrix

D ₁₁	D ₁₂	D ₁₃	D ₁₄	D ₁₅	D ₁₆
D ₂₁	D ₂₂	D ₂₃	D ₂₄	D ₂₅	D ₂₆
D ₃₁	D ₃₂	D ₃₃	D ₃₄	D ₃₅	D ₃₆
D ₄₁	D ₄₂	D ₄₃	D ₄₄	D ₄₅	D ₄₆

$$\begin{split} S_i &= D_{11} + D_{32} + D_{13} + D_{44} + D_{25} + D_{46} \\ S_j &= D_{21} + D_{32} + D_{43} + D_{24} + D_{25} + D_{16} \\ m^* &= \arg\max_m S_m \end{split}$$

RANK detector

Possible solution: RANK detector (Kondrashov K.& Afanassiev V.(ACCT 2012)

- Each element is replaced with its **rank** i.e. the number of elements less that this element
- Codeword corresponding to the greatest rank-sum
- is to be chosen
- Similar (in some sense) to Wilcoxon test, Mann– Whitney test ect.

Communication system (with α detector) ITP RAS

α detector

RANK detector

- Requires sorting of an qXn matrix
- Thus complexity is O(Mlog(M)) where $M = q \cdot n$
- delay is proportional to n
- α detector (Osipov, 2014)
- Choose α greatest values in each column and assign "1" to the greatest ones and "0" to the reminder elments of the column
- lower delay
- lower complexity
- can be treated analytically

System model (with RANK detector) ITP RAS

• *K* "narrowband" interfering signals

(each having a power κ =10⁴ times greater than that of the user under consideration)

 Broadband noise characterized by the signal-to-noise ratio given by

$$SNR = 10 * log_{10}(\frac{E_s}{E_N})$$

where E_N is noise energy in the entire band whereas E_s is the energy in the effective band occupied by the transmitted signal

Total number of available channels Q=4096

Simulation results(K=200,R=1/4,q=16)

Simulation results(K=400,R=1/4,q=16)

Simulation results(K=600,R=1/5,q=16)

Simulation results(K=600,R=1/6,q=16)

Simulation results(K=400,R=1/4,q=32)

Simulation results(K=400,R=1/5,q=32)

Thank you for your attention!