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Trades

Trades (bitrades) correspond to differences between two different
objects of the same types (Steiner systems or other designs (and
their q-ary generalizations, subspace designs), Latin squares or
Latin hypercebes, perfect codes, MDS codes, MRD codes, orthogonal
arrays, ...)

If C ′ and C ′′ are two objects of the same parameters (e.g.,
STS(13)), then (C ′∖C ′′,C ′′∖C ′) is a bitrade (each of C ′∖C ′′,
C ′′∖C ′ is a trade).

However, the trades are defined independently of the existence
of complete objects.



Steiner bitrades

S(t, k , v) → Steiner (t, k, v) bitrade
A Steiner (t, k , v) bitrade is difined as a pair (T0,T1) of disjoint
block sets (where block is a k-subset of V ) such that every t-
subset is either included in exactly one block from T0 and exactly
one block from T1 or not included in any block of T0 ∪ T1.



(extended) 1-perfect bitrades

1-perfect code → 1-perfect bitrade
A 1-perfect bitrade is difined as a pair (T0,T1) of disjoint vertex
sets of H(n, q) (or any other graph) such that every ball of radius
1 either has exactly one vertex from T0 and one vertex from T1

or disjoint with both T0, T1.

extended 1-perfect binary code → extended 1-perfect bitrade
An extended 1-perfect bitrade is difined as a pair (T0,T1) of
disjoint sets of even-weight vertices of H(n, 2) such that every
sphere of radius 1 centered in an odd-weight vertex either has
exactly one vertex from T0 and one vertex from T1 or disjoint
with both T0, T1.



1-perfect trades and Steiner trades

Lemma

Let (T0,T1) be a 1-perfect or extended 1-perfect trade in H(n, 2).
Let k be the minimum weight of words of T0 and T1. Let T

′
i denote

the subset of Ti consisting of words of weight k . Then (T ′
0
,T ′

1
) is a

Steiner (k − 1, k , n) trade.



Results

Current result: we classify, up to equivalence, all extended 1-
perfect trades in H(8, 2), H(10, 2), and H(12, 2) (in the last
case, only the constant-weight trades, which also imply that
they are S(5, 6, 12) trades).

Elements of the general theory: [D. S. Krotov, I. Yu. Mogilnykh,
and V. N. Potapov. To the theory of q-ary Steiner and other-
type trades.]



Context

General theory [K, Mogilnykh, Potapov]:

We consider a rather general class of trades, which generalizes
several known types of trades, including latin trades, Steiner
(k − 1, k , v) trades, extended 1-perfect bitrades.

We prove a characterization of trades in terms of subgraphs of
the original graph and in terms of eigenfunctions.

We prove a characterization of minimum (in the sence of the
weight-distribution bound) trades in terms of isometric bipartite
distance-regular subgraphs of the original distance-regular graph.



Def: eigenfunction, eigenvalues

An eigenfunction of a graph Γ = (V ,E ) is a function f : V → R
that is not constantly zero and satisfies∑︁

y∈Γ1(x)

f (y) = 𝜃f (x) (1)

for all x from V and some constant 𝜃, which is called an eigenvalue
of Γ.



(k , s,m) pairs

Let Γ be a connected regular graph of degree k . Assume that
S is a set of (s + 1)-cliques in Γ such that every edge of Γ is
included in exactly m cliques from S ; in this case, we will say
that the pair (Γ, S) is a (k , s,m) pair.

Given a (k , s,m) pair (Γ, S), we define an S-design, or clique
design, as a set of vertices that intersects with every clique from
S in exactly one vertex. Examples of clique designs in distance-
regular graphs: distance-2 MDS codes (Hamming graphs), distance-
2 MRD codes (bilinear form graphs), STS, SQS, ..., S(k −
1, k , v) (Johnson graphs), extended 1-perfect binary codes (halved
n-cube), STSq, Sq(k − 1, k, v) (Grassmann graph).



Def: bitrade

Let (Γ, S) be a (k, s,m) pair. A pair (T0,T1) of mutually disjoint
nonempty vertex sets is called an S-bitrade, or a clique bitrade,
if every clique from S either intersects with each of T0 and T1

in exactly one vertex or does not intersect with both of them
(in particular, this means that each of T0, T1 is an independent
set in Γ).

A set of vertices T0 is called an S-trade if there is another set
T1 (known as a mate of T0) such that the pair (T0,T1) is an
S-bitrade.

Note that there are differences in terminology.
We use “bitrade = (trade, trade)”
not “trade = (leg, leg)”.



A bitrade criterion

Theorem (K, Mogilnykh, Potapov, 2016)

Let (Γ,S) be a (k , s,m) pair. Let T = (T0,T1) be a pair of disjoint

nonempty independent sets of vertices of Γ. The following assertions

are equivalent.

(a) T is an S-bitrade.

(b) The function

f T (x̄) = 𝜒
T0

(x̄) − 𝜒
T1

(x̄) =

{︂
(−1)i if x̄ ∈ Ti , i ∈ {0, 1}
0 otherwise

(2)
is an eigenfunction of Γ with eigenvalue 𝜃 = −k/s.

(c) The subgraph ΓT of Γ generated by the vertex set T0 ∪ T1 is

regular with degree −𝜃 = k/s (as T0 and T1 are independent

sets, this subgraph is bipartite).



Calculating the weight distribution of an eigenfunction

Lemma

The weight distribution

W (x) =

⎛⎝ ∑︁
y∈Γ0(x)

f (y),
∑︁

y∈Γ1(x)

f (y), . . . ,
∑︁

y∈Γdiam(Γ)(x)

f (y)

⎞⎠
of an eigenfunction f of a distance-regular graph Γ is calculated as

(f (x)W i
A,𝜃)

diam(Γ)
i=0

where the coefficients W i
A,𝜃 are derived from the

intersection array A = (b0, . . . , cdiam(Γ)) of Γ and the eigenvalue 𝜃
that corresponds to f .

Corollary (the weight-distribution (w.d.) bound)

An eigenfunction f of a distance-regular graph has at least∑︀diam(Γ)
i=0

|W i
A,𝜃| nonzeros, in notation of the Lemma.



Trades that meet the w.d. bound

Theorem

Let Γ be a distance-regular graph. Let (Γ,S) be a (k, s,m) pair. Let

T = (T0,T1) be a pair of disjoint nonempty independent sets of

vertices of Γ. The following are equivalent.

(a’) T is a minimum S-bitrade meeting the w.d. bound.

(b’) The function f T is an eigenfunction of Γ
meeting the w.d. bound with eigenvalue −k/s.

(c’) The subgraph ΓT is a regular isometric subgraph of degree k/s.
Moreover, ΓT is distance regular.



Example. Latin bitrades

The vertex set of the Hamming graph H(n, q) is the set {0, . . . , q−
1}n of words of length n over the alphabet {0, . . . , q− 1}. Two
words are adjacent whenever they differ in exactly one position.
The graph H(n, 2) is also known as the n-cube, or the hypercube
of dimension n.

The clique designs in Hamming graphs are known as the latin
hypercubes (in coding theory, these objects are known as the
distance-2 MDS codes), and the clique bitrades, as the latin
bitrades [1]. The most studied case, which corresponds to the
latin squares, is n = 3, see e.g. [2].

The bipartite distance-regular subgraph corresponding to a minimal
bitrade is H(n, 2).

1V. N. Potapov. Multidimensional Latin bitrades. Sib. Math. J., 54(2):317–
324, 2013.

2N. J. Cavenagh. The theory and application of latin bitrades: A survey. Math.

Slovaca, 58(6):691–718, 2008.



Example. Steiner trades

The vertices of the Johnson graph J(n,w) are the binary words
of length n and weight (the number of ones) w . Two words
are adjacent whenever they differ in exactly two positions. The
graphs J(n,w) and J(n, n − w) are isomorphic, and below we
assume 2w ≤ n.

The clique designs in Johnson graphs are known as the Steiner
S(w − 1,w , n) systems, and the clique bitrades, as the Steiner
T(w−1,w , n) bitrades. The subgraph corresponding to a minimal
bitrade is H(w , 2); an example of the vertex set of such subgraph
is {(x , x̄ , 0, ..., 0) | x , x̄ ∈ {0, 1}w , x̄ is opposite to x}. The
minimal bitrade cardinality was found in [3].

In the case w = 3, the minimal trade is known as the Pasch
configuration, or the quadrilateral.

3H. L. Hwang. On the structure of (v , k, t) trades. J. Stat. Plann. Inference,
13:179–191, 1986.



Example. Halved hypercube

The vertices of the halved n-cube are the even-weight binary
words of length n (i.e., a part of the bipartite n-cube). Two
words are adjacent whenever they differ in exactly two positions.

A maximal clique is the set of binary n-words adjacent in H(n, 2)
to a fixed odd-weight word. The clique designs in halved n-cubes
are the extended 1-perfect codes. Such codes exist if and only
if n is a power of two.

The minimal cardinality of a bitrade is 2n/2. An example of a
minimal bitrade is {(x , x) | x ∈ {0, 1}n/2}; bitrades exist if and
only if n is even. The graph corresponding to a minimum bitrade
is H(n/2, 2).



q-ary Steiner systems

Let F n
q be an n-dimensional vector space over the Galois field

Fq of prime-power order q. The Grassmann graph Grq(n, d) is
defined as follows. The vertices are the d-dimensional subspaces
of F n

q . Two vertices are adjacent whenever they intersect in a
(d − 1)-dimensional subspace.
All vertices that include a fixed (d − 1)-dimensional subspace
form a clique in Grq(n, d); if n ≥ 2d then this clique is maximum.
We form S from all such cliques.
A set of vertices that intersects with every clique from S in
exactly one vertex is known as a q-ary Steiner Sq[d − 1, d , n]
system. Constructing q-ary Steiner Sq[d − 1, d , n] systems with
d ≥ 3 is not easy; at the moment, only the existence of S2[2, 3, 13]
is known in this field [M. Braun, at al. ArXiv: 1304.1462].
An S-bitrade is called a Steiner Tq[d − 1, d , n] bitrade.
[DK,IM,VP,2016] The graph corresponding to a minimum bitrade

is the dual polar graph Dd(q) of order
d−1∏︀
i=0

(qi + 1).



Computer-aided classification

Now, we return to the classification of extended 1-perfect bitrades
of length 10.



Algorithm

Below, we consider T0 and T1 as lists of words, whose contents
changes during the run of the algorithm.

At step 1, we assume that T0 ∋ 010 and T1 ∋ v1 = 1100000000,
v2 = 0011000000, v3 = 0000110000, v4 = 0000001100, v5 =
0000000011. Since any bitrade is equivalent to one with these
words, these 6 words will not be changed during the search.

At step 2, for i from 1, . . . , 5, we choose lexicographically first
collection of 5 mutually non-adjacent words in the neighborhood
of vi satisfying the following property:
—every chosen word is not adjacent to any known word of T0

and so on

Use isomorph rejection



Validation of classification

To check the results, we recount the number of solutions that
should be found by the algorithm in alternative way. Double-
counting is a standard way to validate computer-aided classifications
of combinatorial objects, see [P. Kaski and P. R. J. Österg̊ard.
Classification Algorithms for Codes and Designs. 2006]

If we have a bitrade (T0,T1), we know its automorphism group.
Then we can calculate the number of equivalent objects and, in
particular, the number of solutions the algorithm should find

and check if this number is equal to the real number of found
solutions.



Results: n = 8, 10

For n = 8, there are trades of volume 8, 12, 14, 16, 16. Each of
them is the difference between two extended 1-perfect codes.

For n = 10, there are trades of volume 16, 24, 28, 32, 32, 32,
36, 40. Five of them come from n = 8 by the construction

(T0,T1) → (T001 ∪ T110,T010 ∪ T101)

.

The bitrade of volume 36 consists of two optimal constant-
weight codes;

the bitrade of volume 40 consists of two optimal distance-4
codes (Best codes).



Results: n = 12

For n = 12, there are constant-weight trades of volume 32,
48, 56, 56, 68, 86, 72, 72, 72, 72, 80, 80, 92, 92, 92, 96,
96, 98, 102, 108, 108, 110, 110, 120, 120, 132. In the paper
(arXiv:1512.03421) they can be bound with their automorphism
groups and orbit representators.

Four of bitrades, of volume 72, 108, 110, and 110, can be
continued to 3-way trades (T0,T1,T2).

Only 7 nonequivalent bitrades, with volumes 72, 96, 108, 108,
120, 120, 132, can be represented as the difference pair (W0∖W1,W1∖W0)
of two S(5, 6, 12) (Witt designs [R.D.Carmichael, 1931])W0 and
W1.



Examples

Bitrade of volume 32 (minimum):
Orbit representator: 01 01 01 01 01 01.
Automorphism group: the wreath product os S6 and C2.



Examples

Bitrade of volume 98:
Orbit representators:

111111 000000×2

001110 100011×6

011011 001001×6

010110 001101×6·2
011010 010110×6·2
001100 111001×12

010100 110101×12

001010 110101×12

000101 100111×12·2

010101 101010×2

011100 110001×6

011100 001110×6

001011 001011×12

010110 001011×12

001011 010110×12

000001 101111×12

000101 010111×12

000101 111001×12·2

Automorphism group: Dihedral group D12:⟨
(012345)(6789ab), (0b)(1a)(29)(38)(47)(56)

⟩



Examples

Bitrades of volume 110 and 132 (maximum):

Orbit representators (volume 110):
T0 : 000010111011×110

T1 : 000010011111×110

T2 : 000011110011×110

Orbit representators (volume 132):
T0 : 00000101111 1×132

T1 : 11110100000 1×132

Automorphism group:⟨
(0123456789a) (13954)(267a8) (0b)(1a)(25)(37)(48)(69)

⟩
∼ PSL2(11)



Examples

Bitrade of volume 108:

Orbit representators: T0 :
0 0 0 1
0 1 1 0
1 1 0 1

,
0 0 1 1
0 0 1 1
0 1 1 0

Automorphism group:
A4 × S3



Tools

Programming language: SAGE
isomorphism, automorphisms: NAUTY


