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Abstract. In this paper we present a construction for S-boxes using quasi-cyclic
codes. We obtain S-boxes with good nonlinearity.

1 Introduction

S-boxes are key building blocks in the design of the block ciphers. They have
to be chosen carefully to make the cipher resistant against all kinds of attacks.
In particular, there are well studied criteria that a good S-box has to fulfill to
make the cipher resistant against differential and linear cryptanalyses.

To construct good S-boxes, we use quasi-cyclic codes. A code is said to be
quasi-cyclic if every cyclic shift of a codeword by s positions results in another
codeword (s ≥ 1). Eric Chen maintains a database of best-known binary QC
codes [7].

There are many construction methods for good QC codes. Generally, a QC
code of length lm and index l may be represented as the row space of a block
matrix, each row of which has the form (G1, . . . , Gl), where Gi is an m × m
circulant. These rows, or the equivalent polynomial vectors, are conventionally
called ”generators”. This form helps to connect quasi-cyclic codes with S-boxes.
More precisely, we consider the binary simplex codes Sk of length 2k − 1 and
dimension k as a quasi-cyclic codes.

2 Vectorial Boolean Functions (S-Boxes)

A vectorial Boolean function S : Fn
2 → Fm

2 (also called (n,m) S-box or shortly
S-box) can be represented by the vector (f1, f2, . . . , fm), where fi are Boolean
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functions in n variables, i = 1, 2, . . . ,m. The functions fi are called the coordi-
nate functions of the S-box. Then the m× (2n − 1) matrix

GS =




TT (f1)
TT (f2)

...
TT (fm)


 ,

represents the considered S-box, where TT (fi) is the Truth Table of the Boolean
function fi, i = 1, . . . ,m [3]. An S-box is invertible, if n = m and S is an
invertible function. We notice that

Lemma 1. An S-box is invertible if and only if n = m and the matrix GS

generates a [2n, n] code equivalent to the extended simplex code Sn (extended
with a zero coordinate).

Recall that Sn = 〈TT (x1), . . . , TT (xn)〉. In order to study the crypto-
graphic properties of an S-box related to the linearity, we need to consider
all non-zero linear combinations of the coordinates of the S-box, denoted by
Sb = b · S = b1f1 ⊕ · · · ⊕ bmfm, where b = (b1, . . . , bm) ∈ Fm

2 . These are the
component functions of the S-box. The Walsh spectrum of S is defined as the
collection of all Walsh spectra of its component functions. The linearity and
nonlinearity of S are defined as

Lin(S) = max
b∈Fm

2 \{0}
Lin(b · S), nl(S) = min

b∈Fm
2 \{0}

nl(b · S).

Linearity of a Boolean function is defined via the Walsh transform as

Definition 1. Linearity Lin(f) of the Boolean function f is the maximum
absolute value of an Walsh coefficient of f : Lin(f) = max{|fW (a)| | a ∈ Fn

2},
where an Walsh coefficient is defined by

fW (a) =
∑

x∈Fn
2

(−1)f(x)⊕〈a,x〉.

If fa(x) = a1x1⊕a2x2⊕· · ·⊕anxn then fW (a) = 2n−2dH(f, fa). The Par-
seval’s Equality

∑
a∈Fn

2
(fW (a))2 = 22n gives that Lin(f) ≥ 2n/2 [2]. Functions

attaining this lower bound are called bent functions.
Another important parameter which is closely connected with the linearity

is the nonlinearity.

Definition 2. Nonlinearity nl(f) of the Boolean function f is the minimum
Hamming distance from f to the nearest affine function:

nl(f) = min{dH(f, g) | g − affine function}.
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The relation between the linearity and nonlinearity of the Boolean function
f is given by the equality Lin(f) = 2n − 2nl(f) [2]. Obviously, the minimum
linearity corresponds to maximum nonlinearity.

The nonlinearity and the Walsh spectrum of a Boolean function can be
calculated using linear codes. Actually, the set of the Truth Tables of all affine
Boolean functions coincides with the set of codewords of the Reed-Muller code
of first order RM(1, n), which is a linear [2n, n +1, 2n−1] code with a generator
matrix

G(RM(1, n)) =




TT (1)
TT (x1)
TT (x2)

...
TT (xn)




,

and the codewords are all binary linear combinations of the rows of G(RM(1, n)).
The code RM(1, n) is obtained from the extended simplex code by adding the
all ones vector to its generator matrix. This means that RM(1, n) consist of
the codewords of Sn and their complements, or RM(1, n) = Sn ∪ (1 + Sn).

The nonlinearity of the Boolean function f is nl(f) = dH(TT (f), RM(1, n)).
This means that we can use algorithms for calculating the distance from a vector
to a code (or for minimum distance of a linear code) to find the nonlinearity and
linearity of a Boolean function without having the whole Walsh spectrum. We
compute the nonlinearity of the Boolean function f (which is not affine) using
that nl(f) is equal to the minimum distance of the linear code with a generator

matrix Gf =
(

G(RM(1, n))
TT (f)

)
. This helps us to calculate the nonlinearity of

an S-box as the minimum distance of the linear code generated by the matrix

GS =
(

G(RM(1, n))
GS

)
. We have in mind that if there is a coordinate function

Sb which is affine then nl(S) = 0.
The differential uniformity of an (n×m) S-box S with n ≥ m, denoted by

δ, is defined as the largest value in its difference distribution table (DDT) not
counting the first entry in the first row. Differential uniformity is define by:

δ = max
α∈Fn

2 \{0},β∈Fm
2

|{x ∈ Fn
2 |S(x)⊕ S(x⊕ α) = β}|

S should have a differential uniformity as low as is possible. It is well known
that δ takes always only even values in the interval [2n−m, 2n]. The smallest
possible value of δ in the case of bijective S-boxes (n = m) is 2. Summarized
results for good S-boxes are presented in [4, 5].
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3 Quasi-Cyclic Codes

Let K = Fqn be a finite field, α be its primitive element, qn − 1 = m · r,
and β = αr. If G = 〈β〉 < K∗ then G is a cyclic group of order m and
G,αG, α2G, . . . , αr−1G are all different cosets of G in K∗.

For a ∈ Zr we define the circulant m×m matrix

Ca =




Tr(αa) Tr(αaβ) · · · Tr(αaβm−1)
Tr(αaβm−1) Tr(αa) · · · Tr(αaβm−2)

...
Tr(αaβ) Tr(αaβ2) · · · Tr(αa)


 .

When m and r are coprime, the matrices Ca correspond to the different cosets
of G in K∗. The next theorem has been proven in [1] as Lemmas 1 and 2.

Theorem 2. If m and r are coprime, the code C(0) whose nonzero codewords

are the rows of the matrix




C0

C1
...

Cr−1


 is an irreducible cyclic code of length m

and dimension ordm(q). Moreover, the code whose nonzero codewords are the
rows of the matrix

M =




C0 C1 . . . Cr−1

Cr−1 C0 . . . Cr−2
...

C1 C2 . . . C0


 (1)

is equivalent to the simplex [2n − 1 = mr, n, 2n−1] code Sn.

Let M be the matrix M extended with one zero column in the beginning,
and C(M) be the code whose codewords are the rows of M , where q = 2. Then
any generator matrix of C(M) can be considered as an invertible S-box. Since
all these S-boxes generate the same code C(M), they have the same linearity
and nonlinearity.

We consider two constructions for S-boxes. For the first construction we
take the first ml rows of the matrix M such that the obtained matrix Gm has
rank n. Then we investigate all S-boxes Gmπ where π ∈ Sr is a permutation
of the circulants C0, C1, . . . , Cr−1. Unfortunately, these S-boxes do not have
good nonlinearity. Therefore we decided to check another construction which
we describe in the next section.
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4 A new Construction using Quasi-Cyclic Codes

Take again the matrix Gm. For this construction, we consider the code with a
generator matrix

MR =
(

1 11 . . . 1
0 Gm

)
(2)

This matrix generates a code which is equivalent to RM(1, n) but has the
structure of a quasi-cyclic code. We again use the matrices Gmπ but now we
compute the minimum distance d of the code generated by the matrix




1 11 . . . 1
0 Gm

0 Gmπ


 .

If σ is a permutation which maps the Reed-Muller code RM(1, n) to the code
with a generator matrix MR then d is the nonlinearity of the S-box represented
by the matrix σ−1(Gmπ).

We investigate the S-boxes, constructed in the above method, for n = 4 and
8. In these cases 24 − 1 = 3 · 5, 28 − 1 = 15 · 17 = 5 · 51 (= 3 · 85). For n = 4
we obtain three optimal S-boxes (nl = 8, δ = 4). We have done the exhaustive
search for m = 17, r = 15, and have concluded that there are 15 S-boxes with
nonlinearity 112, and 601 S-boxes with nonlinearity 108. The 15 S-boxes have
differential uniformity δ = 4.
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