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Search for a moving target in a graph
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Abstract. In this paper we consider a searching game called k-chase. A Princess
occupies a vertex of a given graph G and a Suitor is trying to find her. On each turn,
the Suitor examines k vertices of G looking for the Princess (and, if he finds her,
the game ends). Following this, the Princess moves to an adjacent vertex of G and
the turn is complete. For k = 1, we give a complete characterization of graphs for
which it is possible for the Suitor to find the Princess. We also find the minimum k
for which the Suitor finds the Princess when G is a rectangular grid of size 2n× 2n.

1 Preliminaries

In general, search problems can be viewed as a game between two players, a
Questioner and a Responder. The game is played as follows: first, the Respon-
der selects an element x, unknown to the Questioner, out of some fixed set S
(the search space). The Questioner then attempts to find x by asking questions
of a pre-specified form, e.g., whether x is in a given subset of S. For more
information and extensive bibliography the reader is referred to [1].

In this paper we study a searching game in which the unknown element
moves within the search space. Searching games of this kind have previously
been considered in [2].

Definition. Let G be a finite directed graph. A k–chase on G is a game
played between two players, a Suitor and a Princess. At the beginning of the
game, the Princess occupies a vertex of G unknown to the Suitor. On each turn
the Suitor investigates k vertices of G. If the Princess occupies one of them,
the Suitor finds her, wins and the game ends. Otherwise, the Princess moves
to an adjacent vertex and the turn is complete. If the Princess can evade the
Suitor indefinitely, the game is a win for the Princess.

This differs from classical moving target search on two counts: the upper
bound on question size (ordinarily, questioning arbitrary subsets of the search
space is allowed) and vertices being investigated individually rather than as a
set (i.e., it suffices for the Suitor to name just one subset of the search space
containing the Princess).

Let S ⊂ V (G). Denote by c(S) the set of all direct successors of the vertices
in S. Given a strategy for the Suitor, we write Si for the set of vertices that the
Princess could occupy at the beginning of turn i and Qi for the set of vertices
investigated by the Suitor on turn i.
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So, S1 = V (G) and for all i we have Si+1 = c(Si \Qi). Moreover, a k-chase
is a win for the Suitor if and only if for some i he can achieve |Si| ≤ k.

Definition. The chase depth of a given graph G is the minimum positive
integer k such that the Suitor has a winning strategy for the k-chase on G.

In the given scenario there are three main research questions:

Q1. Given a positive integer k, describe all graphs G of chase depth k.

Q2. Given a graph G, find its chase depth.

Q3. Given a graph G of chase depth k, find the minimum number of turns
necessary for the Suitor to win.

Very little has been written on the above problems. A special case of Q3
(when G is a path of length 17 and k = 1) was suggested by Dave Penneys [3],
initiating the line of research that led to the results presented in this paper.
We focus on Q1 for k = 1 and on Q2 for rectangular grid graphs. We begin by
listing some general properties aimed toward establishing our main results.

2 General results

First we study the connection between a connected graph and its chase depth.
Definition. The stratification of a connected graph G is the finest par-

titioning O1, O2, . . . , Om of V (G) such that c(Oi) = Oi+1 for all i (where
Om+1 = O1). The Oi are the strata of G.

The stratification of a connected graph G can be obtained as follows. Start
with O′1 = {v} where v is any vertex of G, and set O′i+1 = c(O′i) for all i.
The sequence O′1, O′2, . . . is eventually periodic and its period is exactly the
stratification of G.

Lemma 1. Stratification lemma. The chase depth of a graph G with
stratification O1, O2, . . . , Om does not change if, at the beginning of the game,
the Suitor is given the additional information that the Princess occupies a vertex
in O1.

Proof. Let k′ be the O1-chase depth of G, i.e., the least positive integer
such that there exists a winning strategy for the Suitor given that the Princess
occupies a vertex in O1.

Clearly, k ≥ k′. We are left to exhibit a winning k′-depth chase strategy for
the Suitor.

The Suitor proceeds as follows. On stage 1, he carries out the O1-chase
strategy. If this does not result in the discovery of the Princess, the Suitor
plays waiting moves until some turn i1 such that i1 +1 is divisible by m and, on
stage 2, carries out the O1-chase strategy once again. If this does not result in
the discovery of the Princess, the Suitor plays waiting moves until some further
turn i2 such that i2 + 2 is divisible by m, et cetera. This guarantees that, if the
Princess starts in Oj , the Suitor finds her on stage j. �
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Notice that the stratification lemma does not tell us much about the number
of turns that it takes for the Suitor to find the Princess relative to the case of
an O1-chase.

Lemma 2. Expansion lemma. Let G be a graph with stratification O1, O2,
. . . , Om and chase depth k. Suppose that there exist positive integers l, l1, l2,
. . . , lm such that, for all i, li < |Oi| and every subset S of Oi of size at least li
satisfies |c(S)| ≥ l + li+1 (where lm+1 = l1). Then k ≥ l + 1.

Proof. Suppose that k ≤ l and let the Princess start at Oj . Then S1 = Oj

and the condition of the Lemma implies that |St| ≥ l+lt+j−1 (where lm+1 = l1).
Therefore, |St| ≥ lt + l > l ≥ k for all t, implying that |St| > k for all t. Hence,
the Princess wins. �

From this point on, we shall only be interested in symmetric, loopless graphs,
or, equivalently, in undirected graphs.

Lemma 3. Let O1, O2, . . . , Om be the stratification of an undirected graph
G. Then m = 2 if G is bipartite and m = 1 otherwise.

Proof. Since G is undirected, O1 ⊂ c(c(O1)) = O3, so m ≤ 2. �
Even though we make heavy use of the expansion lemma in subsequent

exposition, it has its limitations even in the undirected case.

Theorem 1. There exist undirected graphs G of arbitrarily large depth k
such that the best bound obtained by means of the expansion lemma is k+1

2 .
Proof. Construct G as follows. Start with a complete graph on 2r + 1 red

vertices. For each pair u, v of red vertices, add 2r + 1 green vertices adjacent
only to u and v, or g = (2r + 1)

(
2r+1

2

)
green vertices total.

The stratification of G consists of a single stratum, O1 = V (G). We prove
first that for each positive integer l1 < |O1|, there is a subset S of V (G) such
that |S| = l1 and |c(S)| ≤ l1 + r. Indeed,

◦ if l1 ≤ r, any set of l1 green vertices has at most 2l1 neighbours, thus
|c(S)| ≤ 2l1 ≤ l1 + r;

◦ if r + 1 ≤ l1 ≤ g, any set of green vertices has at most 2r + 1 neighbours,
thus |c(S)| ≤ 2r + 1 ≤ l1 + r;

◦ if g < l1 < |V (G)| − r = g + r + 1, the set of all green vertices together
with l1 − g ≤ r red vertices has at most (2r + 1) + [g − (2r + 1)] = g
neighbours, thus |c(S)| ≤ g < l1 + r;

◦ if l1 ≥ |V (G)| − r the statement is obvious.

The Expansion Lemma implies that we cannot have a depth bound greater
than r + 1.

On the other hand, no 2r-depth strategy exists for the Suitor as, when S1

is the set of all red vertices, Si would contain at least one red vertex for all odd
i and at least one green vertex for all even i. �
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3 Graphs of chase width 1

In this section we describe all simple graphs G of chase depth 1.
Definition. A path of length n is a graph with vertex set {v1, v2, . . . , vn}

and edges vivi+1 for 1 ≤ i ≤ n− 1.

Lemma 4. Any path has chase depth 1.
Proof. Such a graph is bipartite with strata O1 = {v1, v3, . . . } and O2 =

{v2, v4, . . . }. By the stratification lemma, we may assume that the Princess is
in O2. The Suitor finds her by successively looking into vertices v2, v4, . . . ,
vn−1. �

Remark. For a path of length n and k = 1, the minimum number of turns
necessary for the Suitor to win is 2n− 2.

Lemma 5. Any cycle has chase depth 2.
Proof. Suppose that the cycle Cn = (v1, v2, . . . , vn) has chase depth 1 and

consider a winning strategy for the Suitor such that he examines vertex uj on
turn j. Since the Princess has two options on every turn, she can always play
so that she does not occupy uj on turn j: a contradiction.

On the other hand, for k = 2 the Suitor can examine v1 on each turn and, for
the second vertex, simulate the path strategy specified in the proof of Lemma
4. �

Lemma 6. The graph G? with vertices {ui | 0 ≤ i ≤ 9} and edges
{(u0, ui) | i = 1, 2, 3}∪{(u3k+i−3, u3k+i) | k = 1, 2; i = 1, 2, 3} has chase depth
2.

Proof. Apply the expansion lemma for O1 = {u0, u4, u5, u6}, O2 = V (G)\A,
l = 1, l1 = 2 and l2 = 3. �

The following Theorem describes all graphs of chase depth 1.

Theorem 2. A graph G has chase depth 1 if and only if G is acyclic and
G? 6⊂ G.

Proof. If G has a cycle or G? ⊂ G then Lemma 5 and Lemma 6 imply that
the chase depth of G is at least 2.

If G is a path then the result follows by Lemma 4. Suppose, from this point
on, that G is not a path.

Let v1v2 . . . vn be the longest path in G. Since G is acyclic and G? 6⊂ G, we
infer that for any i the longest path from vi to a vertex outside v1, v2, . . . , vn

has maximal length:

◦ 0 for i = 1 and i = n;

◦ 1 for i = 2 and i = n− 1;

◦ 2 for i = 3, . . . , n− 2.

Since G is acyclic, G is bipartite. Hence G has two strata, say, O1 and O2

with v2 ∈ O2. By the stratification lemma, we may assume that the Princess is
initially in O2. Consider the following strategy.
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The Suitor begins by successively examining v2, v3, . . . until he reaches a
vertex vj with 3 ≤ j ≤ n − 2 of degree at least 3. Let the adjacent vertices of
vj distinct from vj−1 and vj+1 be u1, u2, . . . , uk. In the worst-case scenario,
there exist vertices w1, w2, . . . , wk, each of degree 1, such that ui and wi are
adjacent for 1 ≤ i ≤ k. Note also that vj and w1, w2, . . . , wk lie in one and
the same stratum. Prior to examining vj , the Suitor knows that the Princess
occupies the stratum containing vj . Thus, if the Princess occupies vertex w
then one of the following is true:

◦ w = vs for s ≥ j and j + s even;

◦ w is at a distance of 2 from vs for s > j and j + s even;

◦ w is adjacent to vs for s > j and j + s odd;

◦ w = ws for some 1 ≤ s ≤ k.

Denote the set of all possible w by S. After the Suitor looks into vj and u1,
the Princess could only occupy a vertex in S\{w1}. The Suitor looks into vj

and u2 next: after this, the Princess could only occupy a vertex in S\{w1, w2}.
Continuing on in this way, after the sequence vj , u1, vj , u2, . . . , vj , uk, the
Princess occupies a vertex in

S\{w1, w2, . . . , wk}.

The Suitor continues by examining vj+1 and applying the same strategy recur-
sively. Therefore, G has chase depth 1. �

4 Rectangular grids

In this section we find the chase depth of a rectangular grid of size 2n× 2n.
Definition. An m×n grid is an undirected graph of vertices (i, j), 1 ≤ i ≤ m

and 1 ≤ j ≤ n, such that (i1, j1) and (i2, j2) are adjacent iff

{|i1 − i2|, |j1 − j2|} = {0, 1}.

An m×n grid is isomorphic to an m×n chessboard with two squares being
adjacent iff they share a common side.

Theorem 3. The chase depth of a 2n× 2n grid is n + 1.
Proof. Take O1 to be the set of all white squares (i + j even) and O2 to be

the set of all black squares (i + j odd).
First we exhibit a winning (n + 1)-width O1-chase strategy for the Suitor.

This is exceedingly simple: number all squares 1 through 4n2 from left to right
and from bottom to top (so that (i, j) is numbered n(i− 1) + j) and then, on
each turn i, investigate the n + 1 lowest-ranking squares in Si. It is easy to see
that this leads to |Si+1| = |Si| − 1 for all i until the Princess is found.
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We proceed to show that every set S of n2 white squares satisfies
|c(S)| ≥ n2 + n. By the expansion lemma with l = n and l1 = l2 = n2,
this suffices to complete the proof.

Partition V (G) into n vertical 2 × n rectangles Bp, 1 ≤ p ≤ n (so that
Bp = {(i, j) | 2p− 1 ≤ i ≤ 2p}).

We say that a Bp is homogenous iff either all white squares in Bp do not
belong to S or all white squares in Bp belong to S.

If Bp is non-homogenous, then |c(S)∩Bp| ≥ |S ∩Bp|+ 1. It follows that, if
all Bp are non-homogenous, |c(S)| ≥ |S|+ n, and we are done.

We are left to consider the case when at least one Bp is homogenous.

Repeat the above argument, but with V (G) partitioned into horizontal rect-
angles Cq, 1 ≤ q ≤ n (so that Cq = {(i, j) | 2q − 1 ≤ j ≤ 2q}). We see that
there is at least one homogenous Cq.

Since Bp and Cq have (exactly two) common white squares, they must be
homogenous in the same way. This means that either all white squares in
Bp ∪ Cq are not in S, or all white squares in Bp ∪ Cq are in S. Assume the
former; the latter case is analogous.

Lemma 7. Consider a (2a+1)× (2b+1) grid H, a ≥ b. Colour the squares
of H in a checker-like manner (so that the colour of (i, j) is a bijective function
of the parity of i + j) and remove all white squares in the top row and the
rightmost column. Then the remainder of H can be partitioned into disjoint
paths so that each path starts and ends on a black square and the length of
each path is at most 2a + 5.

Proof. The figure exhibits the
lower left corner of a partitioning I
of the upper right quadrant into dis-
joint paths (it is clear from the fig-
ure how I extends to the complete
quadrant). Given a and b, restrict
I to the rectangle spanned by either
(1, 1) and (a, b), or (2, 1) and (a+1, b),
depending on H’s colouring, and re-
move all white squares in the top row
and rightmost column of the restric-
tion. This gives the desired partition-
ing; moreover, with this construction
the lengths of all paths do not exceed
2a + 3. �
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Partition G into four disjoint rectangles along the longer axes of Bp and Cq,
then partition each quarter as in the lemma. Since each of the paths obtained
in this way contains at most n + 1 white squares and S consists of n2 white
squares, there are n paths P1, P2, . . . , Pn such that Pi∩S is non-empty for all i.
This, however, means that |c(S)∩Pi| ≥ |S ∩Pi|+ 1 for all i and, consequently,
|c(S)| ≥ |S|+ n, and we are done. �
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