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Abstract. Any resolvable BIB design (v, b, r, k, λ) with λ = 1 induces an optimal
equidistant code C1 with parameters (n, N, d) = (r, v, r − 1)q1 where q1 = v/k
and vice versa. We add to this equivalence two more configurations: an optimal
equidistant constant composition (v, v, v−k+2)q2 code C2 with q2 = r+1 and some
additional properties and near-resolvable BIB design with parameters (v, b′, r′, k −
1, k − 2).

1 Introduction

Let Q = {0, 1, ..., q− 1}. Any subset C ⊆ Qn is a code denoted by (n, N, d)q of
length n, cardinality N = |C| and minimum (Hamming) distance d. A code C
is called equidistant if all the distances between distinct codewords are d (see,
for example, [5] and references there).

Definition 1. A (v, b, r, k, λ) design (BIB design (v, k, λ)) is an incidence
structure (X, B), where X = {1, . . . , v} is a set of elements and B is a collection
of k-subsets of elements (called blocks) such that every two distinct elements
are contained in exactly λ > 0 blocks (0 < k ≤ v).

The other two parameters of a BIB (v, k, λ) design are b = vr/k (the number
of blocks) and r = λ(v − 1)/(k − 1) (the number of blocks containing one
element).

In terms of binary incident matrix a (v, k, λ) design is a binary (v×b) matrix
A with columns of weight k such that any two distinct rows contain exactly λ
common nonzero positions.

Definition 2. A (v, k, λ)-design (X, B) is resolvable (called RBIB design) if
the set B can be partitioned into not-intersecting subsets Bi, i = 1, . . . , r,

B =
r⋃

i=1

Bi,
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such that for every i, the set (X,Bi) is a trivial 1-design (i.e. any element of
X occurs in Bi exactly one time).

The incident matrix A of a resolvable design (v, k, λ) looks as follows:

A = [A1 | · · · |Ar], (1)

where for any i ∈ {1, . . . , r} the every row of Ai has the weight 1.

Definition 3. A (v, k, k − 1)-design (X, B) is near-resolvable (NRBIB) if the
set B can be partitioned into not-intersecting subsets Bi, i = 1, . . . , v,

B =
v⋃

i=1

Bi,

such that for every i, the set (X \{i}, Bi) is a trivial 1-design (i.e. any element
of X (except i) occurs in Bi exactly one time).

The incident matrix A of a near-resolvable design (v, k, λ) can be presented
as follows:

A = [A1 | · · · |Av], (2)

where for any i ∈ {1, . . . , r} the every row of the submatrix Ai has the weight
1 with one exception; the ith row of Ai is the zero row.

See [1, 4] and references there for resolvable and near-resolvabe designs.

2 Main results

The following result is known [6].

Theorem 1. An optimal equidistant (n, d, N)q code exists if and only if there
exists a resolvable (v, k, λ) design, where

q = v/k, n = λ(v − 1)/(k − 1), N = v, d = n− λ. (3)

For a given q-ary code C with parameters (n, N, d)q denote by M = MC

the matrix over Q of size N × n formed by the all codewords of C.

For the case λ = 1 we can add to Theorem 1 the following

Theorem 2. The following configurations are equivalent:

• (i) A resolvable (v, k, 1) design.
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• (ii) An optimal equidistant (n1, d1, N1)q1 code C1 with parameters

q1 = v/k, n1 = (v − 1)/(k − 1), N1 = v, d1 = (v − k)/(k − 1).

• (iii) An optimal equidistant constant composition (n2, N2, d2)q2-code C2

with parameters

q2 = (v + k − 2)/(k − 1), n2 = v, N2 = v, d2 = v − k + 2

where every nonzero symbol occurs in every row (respectively, in every
column) of the matrix M2 exactly (k − 1) times and with the following
property: every two rows of M coincide in k−2 positions, which have the
same symbol of the alphabet.

• (iv) A near-resolvable (v, b′, r′, k − 1, k − 2) design, where

b′ = v(v − 1)/(k − 1), r′ = v − 1.

Denote by Nq(n, d, w) the maximal possible number N of codewords in the
(n,N, d)q code, and by Nq(n, d, w) the maximal possible number N of code-
words of weight w in the (n,N, d)q code.

The equidistant (n,N, d)q code C is optimal if its cardinality meets the
Plotkin bound

Nq(n, d) ≤ qd

qd− (q − 1)n
, if qd > (q − 1)n, (4)

The code C1 from Theorem 2 is optimal according to the bound (4).

The equidistant constant weight (n,N, d)q code C with weight of codewords
w is optimal if its cardinality meets the following bound [2]

Nq(n, d, w) ≤ (q − 1)dn

qw2 − (q − 1)(2w − d)n
, if qw2 > (q − 1)(2w − d)n, (5)

The code C2 from Theorem 2 is optimal according to the bound (5).

We shortly explain the constructions.
(i) ↔ (ii) Let X = {x1, x2, . . . , xv} and let Q = {0, 1, . . . , q − 1}. Given a
symbol i ∈ Q denote by T (i) a binary vector of length q and weight 1 with
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(i + 1)th nonzero position. For a vector c = (c1, . . . , cn) of length n over Q
denote by T (c) the binary vector T (c) = (T (c1), . . . , T (cn)) of length q · n. For
a given (n,N, d)q code C with matrix M , denote by T (M) a binary (N × qn)-
matrix obtained from M by applying the operator T (C) to all codewords. It is
easy to see that if C is an equidistant (n, N, d = n− 1)q code then the matrix
T (M) is an incident matrix A in the form (1) of the resolvable BIB design with
parameters v, b, r, k, λ = 1, satisfying (3). Conversely, given an incident matrix
A in the form (1) of the resolvable BIB design with parameters v, b, r, k, λ = 1,
the matrix T−1(A) is the matrix M1 formed by the all codewords of equidistant
code C1 with parameters n1, N1, d1, q1 satisfying (3)

(iii) ↔ (iv) Given a nonzero symbol i ∈ Q denote by Γ(i) a binary vector of
length q−1 and weight 1 with ith nonzero position. For a vector c = (c1, . . . , cn)
of length n over Q denote Γ(c) the binary vector Γ(c) = (Γ(c1), . . . , Γ(cn)) of
length (q−1) ·n. For a given (n,N, d)q code C with matrix M denote by Γ(M)
a binary (N×(q−1)n)-matrix obtained from M by applying the operator Γ(C)
to all elements. It is easy to see that if C2 is an equidistant (n, n, d = n−k+2)q

code with properties stated in Theorem 2, then the matrix Γ(M2) is an incident
matrix A in the form (2) of the near-resolvable BIB design with parameters
v, b′, r′, k − 1, k − 2), satisfying (3). Conversely, given an incident matrix A in
the form (2) of the near-resolvable BIB design with parameters v, b, r, k−1, k−2,
the matrix Γ−1(A) is the matrix M2 formed by the all codewords of equidistant
code C2 with parameters and properties stated in Theorem 2.

(i)↔ (iii) Given a resolvable BIB design (X, B) with parameters (v, b, r, k, 1),
where X = {1, 2, . . . , v}, B = {z1, z2, . . . , zb}, and

B = B1 ∪B2 ∪ · · · ∪Br,

we build the q-ary (v× v)-matrix M = [mf,g] over Q = {0, 1, . . . , q2− 1} where
q2 = r + 1 as follows: to any block z` = {i, j, u, . . . , h} ∈ Bs, we associate the
element

mf,g = s, for all f, g ∈ z`, f 6= g,

and mf,f = 0 for all f ∈ {1, 2, . . . v}. Then it is easy to see that M is formed by
the q-ary equidistant (v, v, v−k+2)q2-code C2 with properties stated in Theorem
2. Conversely, given an equidistant (n, n, n−k+2)q-code C2 satisfying Theorem
2 with matrix M , for every jth row c(j) of M , j ∈ {1, . . . , v}, we form q − 1
blocks zj,1, . . . , zj,q−1 as follows: if c(j) contains k − 1 elements s in positions
i1, i2, . . . , ik−1 we form the block zj,s = {j, i1, i2, . . . , ik−1} and place this block
to the set Bs. In this way we obtain b = n(q − 1)/(k − 1) blocks of size k
partitioned into r = q − 1 subsets Bs, containing v = n elements {1, 2, . . . , n}.
It is easy to see that every pair of elements {1, 2, . . . , v} occurs exactly once.

We give an example. Let A1 be the incident matrix of the resolvable (16, 4, 1)
design (or affine plane of order 4) (for shortness, we put only ones and omit
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zeros):

A1 =




1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1




.

From A1 using our operator T−1 we obtain the optimal equidistant (5, 16, 4)4
code C1 (which is common known) and using our construction, we obtain the
optimal equidistant constant composition (16, 16, 14)6 code C2, whose matrices
M1 and M2 of codewords we give.

M1 =




0 0 0 0 0
0 1 1 1 1
0 2 2 2 2
0 3 3 3 3
1 0 1 2 3
1 1 0 3 2
1 2 3 0 1
1 3 2 1 0
2 0 2 3 1
2 1 3 2 0
2 2 0 1 3
2 3 1 0 2
3 0 3 1 2
3 1 2 0 3
3 2 1 3 0
3 3 0 2 1




, M2 =




0 1 1 1 2 3 4 5 2 5 3 4 2 4 5 3
1 0 1 1 3 2 5 4 5 2 4 3 4 2 3 5
1 1 0 1 4 5 2 3 3 4 2 5 5 3 2 4
1 1 1 0 5 4 3 2 4 3 5 2 3 5 4 2
2 3 4 5 0 1 1 1 2 4 5 3 2 5 3 4
3 2 5 4 1 0 1 1 4 2 3 5 5 2 4 3
4 5 2 3 1 1 0 1 5 3 2 4 3 4 2 5
5 4 3 2 1 1 1 0 3 5 4 2 4 3 5 2
2 5 3 4 2 4 5 3 0 1 1 1 2 3 4 5
5 2 4 3 4 2 3 5 1 0 1 1 3 2 5 4
3 4 2 5 5 3 2 4 1 1 0 1 4 5 2 3
4 3 5 2 3 5 4 2 1 1 1 0 5 4 3 2
2 4 5 3 2 5 3 4 2 3 4 5 0 1 1 1
4 2 3 5 5 2 4 3 3 2 5 4 1 0 1 1
5 3 2 4 3 4 2 5 4 5 2 3 1 1 0 1
3 5 4 2 4 3 5 2 5 4 3 2 1 1 1 0



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Now applying the operator Γ to the matrix M2 we obtain the binary (16×80)
matrix which is the incident matrix A2 of near-resolvable (16, 3, 2) design. We
give the first 40 columns of this matrix.

A2 =




00000 10000 10000 10000 01000 00100 00010 00001 · · ·
10000 00000 10000 10000 00100 01000 00001 00010 · · ·
10000 10000 00000 10000 00010 00001 01000 00100 · · ·
10000 10000 10000 00000 00001 00010 00100 01000 · · ·
01000 00100 00010 00001 00000 10000 10000 10000 · · ·
00100 01000 00001 00010 10000 00000 10000 10000 · · ·
00010 00001 01000 00100 10000 10000 00000 10000 · · ·
00001 00010 00100 01000 10000 10000 10000 00000 · · ·
01000 00001 00100 00010 01000 00010 00001 00100 · · ·
00001 01000 00010 00100 00010 01000 00100 00001 · · ·
00100 00010 01000 00001 00001 00100 01000 00010 · · ·
00010 00100 00001 01000 00100 00001 00010 01000 · · ·
01000 00010 00001 00100 01000 00001 00100 00010 · · ·
00010 01000 00100 00001 00001 01000 00010 00100 · · ·
00001 00100 01000 00010 00100 00010 01000 00001 · · ·
00100 00001 00010 01000 00010 00100 00001 01000 · · ·




3 References

1. R.J.R. Abel, G. Ge, J. Yin, Resolvable and near-resolvable designs// Hand-
book of Combinatorial Designs. 2nd edition. Ed. by Colbourn C.J., Dinitz
J.H., Boca Raton: Chapman and Hall/CRC Press, 2007. VI.7. P. 124 - 132.

2. Bassalygo L.A. New upper bounds for error-correctng codes// Problems
of Information Transmission. 1965. vol. 1, No. 1. pp. 41 - 44.

3. L. A. Bassalygo, V. A. Zinoviev, Optimal equisymbol codes// Problmes
of Information Transmissions, 2014. vol. 50, No. 4, pp. 18 - 24.

4. S. Furino, Y. Miao, J. Yin, Frames and Resolvable Designs, CRC Press,
Boca Raton - New York - London - Tokyo. 1996.

5. G. T. Bogdanova, V. A. Zinoviev, T. J. Todorov, On construction of
q-ary equidistant codes// Problmes of Information Transmission, 2007, vol. 43,
No. 4, pp. 13 - 36.

6. N. V. Semakov, V. A. Zinoviev, Equidistant q-ary codes with maxi-
mal distance and resolvable balanced incomplete block-designs// Problems of
Information Transmission, 1968, V. 4. No. 2, pp. 3 - 10.


