
Fifteenth International Workshop on Algebraic and Combinatorial Coding Theory
June 18-24, 2016, Albena, Bulgaria pp. 319–324

Completeness of the 95256-cap in PG(12, 4) 1

Daniele Bartoli, Stefano Marcugini, Alfredo Milani, Fernanda
Pambianco
{daniele.bartoli, stefano.marcugini, alfredo.milani,

fernanda.pambianco}@unipg.it
Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Van-

vitelli 1, Perugia, 06123, Italy

Abstract.We describe an algorithm for testing the completeness of caps in PG(r, q),
q even. It allowed us to check that the 95256-cap in PG(12, 4) recently found by Fu
el al. (see [7]) is complete.

1 Introduction

Let PG(r, q) be the r-dimensional projective space over the Galois field Fq. An
n-cap in PG(r, q) is a set of points no three of which are collinear. An n-cap in
PG(r, q) is called complete if it is not contained in an (n+ 1)-cap in PG(r, q);
see [8].

The points of a complete n-cap in PG(r−1, q) can be treated as columns of
a parity check matrix of an [n, n− r, 4]q linear code with the exceptions of the
complete 5-cap in PG(3, 2) and the complete 11-cap in PG(4, 3) corresponding
to the binary [5, 1, 5]2 code and to the Golay [11, 6, 5]3 code respectively.

An n-cap in PG(r, q) of maximal size is called a maximal cap in PG(r, q).
A classical problem on caps is to determine the maximal size of complete caps
in PG(r, q). This is also known as the packing problem; see [9]. Denote the
size of a maximal cap in PG(r, q) as m2(r, q), and the largest size of a known
complete cap as m2(r, q).

Of particular interest is the case q = 4, due the connection with quantum
error correction established in [6], where a class of quantum codes, the quantum
stabilizer codes, is described in terms of certain additive quaternary codes.

Additive quaternary codes are defined over F4 but are linear over F2. If we
restrict considering quaternary quantum codes that are indeed F4-linear then
we have the following definition; see [1, 2]:

1This research was supported in part by Ministry for Education, University and Research
of Italy (MIUR) and by the Italian National Group for Algebraic and Geometric Structures
and their Applications (GNSAGA - INDAM).

320 ACCT2016

Definition 1. A linear quaternary quantum stabilizer code is a subspace C ⊂ Fn
4

such that C ⊂ C⊥H , where duality is with respect to the Hermitian inner product.

Here the Hermitian inner product of x = (x1, ..., xn) and y = (y1, ..., yn)
is ⟨x, y⟩ =

∑n
i=1 xiyi, where y = y2. The reason for this definition is that a

linear quaternary quantum stabilizer code C of length n, dimension r and dual
distance ≥ d (equivalently: of strength > d) allows the construction of a pure
quantum stabilizer code [[n, n− 2r, d]]4; see [4, Theorem 1].

A pure quantum code [[n, n−2r, 4]] which is linear over F4 is obtained from
a cap satisfying certain conditions; see [5, Theorem 2.8]:

Definition 2. A cap C in PG(r− 1, 4) is a quantum cap if it is not contained
in a hyperplane and if it satisfies the following equivalent conditions:

• each hyperplane meets the cap in the same parity as the cardinality of the
cap;

• the corresponding quaternary [n, r]4-code has all its weights even;

• the corresponding quaternary [n, r]4-code is self-orthogonal with respect to
the Hermitian inner product.

Theorem 3. The following are equivalent:

• A pure stabilizer quantum code [[n, n− 2r, 4]] which is linear over F4.

• A quantum n-cap in PG(r − 1, 4).

The value of m2(r, 4) is known for k ≤ 4: m2(2, 4) = 6, m2(3, 4) = 17, and
m2(4, 4) = 41.; see [3].

In [7] it is proved that m2(8, 4) = 2136, m2(9, 4) = 5124, m2(10, 4) = 15840,
m2(11, 4) = 36084 and they also give a 95256-cap in PG(12, 4).

Their results have been obtained by computer-supported recursive construc-
tions. They also present an algorithm for checking completeness of a cap. This
algorithm allowed checking the completeness of the caps for k ≤ 11, but it is
too computationally expensive for the case k = 12. As they wrote: “But as for
checking completeness of larger caps in PG(r, 4), r ≥ 12, new algorithms are
needed.”; see [7, Section 5]. We propose a new fast algorithm that allowed to
face also this case: we verified that the 95256-cap in PG(12, 4) is complete, so
m2(12, 4) = 95256. Our algorithm is based on a compact representation of the
points of PG(r, q), q even, and on minimizing the computational costs of the
operations more often performed during the check of the completeness of the
cap.

Section 2 describes the algorithm and applies it in PG(12, 4). Section 3
contains the generalization of the algorithm to other even values of q and other
dimensions.

Bartoli, Marcugini, Milani, Pambianco 321

Table 1: The time and space cost of the algorithm of [7]

Size of cap 2136 5124 15840 36084

Time 7805 46244 428029 2261301

2 A new algorithm for checking completeness of a
cap

In [7] an algorithm for checking completeness of a cap C in PG(r, 4) is presented.
It is based on a bijective map ϕ between points in PG(r, 4) and a subset T (r)
of the positive integer set N:

ϕ : PG(r, 4) → T (r),
ϕ : P 7→ ϕ(P),

where
P = (x0, x1, ..., xr)

T ,

ϕ(P) = 4rx0 + 4r−1x1+···+4xr−1 + xr.
It can be easily seen that a cap is complete if and only if each point P of

PG(r, q) not belonging to the cap lies on a secant line of the cap. In this case
we say that P is covered.

To keep track of the covering of the points, a vector U of size |T (r)| is used.
Initially all elements of U are set to be 1.

Then all pairs of points of the cap are considered. For each pair of points
(Pi, Pj) the three other points belonging to the line through Pi, Pj are com-
puted. To do this all linear combination Q = αP1 + P2, α ∈ F4\{0} are com-
puted. The point Q is normalized, choosing a representation with the leftmost
non-zero coordinate equal to 1. Finally the position ϕ(Q) of U is set to 0. The
process continues until all elements of U became 0 or all pairs of points of the
cap have been considered.

At the end the cap is complete if and only if all elements of U are 0. Table
1 reports the time cost of the algorithm using an Intel(R) Xeon(R) CPU E5504
@ 2.00GHz; see [7, Table 1]. However, the paper does not mention the unit of
time used in Table 1.

We devised a new algorithm for checking the completeness of a cap in
PG(r, 4) choosing a representation that optimizes the computational cost of the
main operations of the previous algorithm: the computation of Q = αP1 + P2

and the normalization of a point Q.
Let be F4 = {0, 1, ω, ω}, where ω2 = ω, ω = ω+1, and ω3 = 1. If we define

a representation function ρ : F4 → N as in the following:

ρ(0) → 0, ρ(1) → 1, ρ(ω) = 2, ρ(ω) = 3,

then we have

322 ACCT2016

a+ b = ρ(a)ˆρ(b), a, b ∈ F4,

where ˆ is the bitwise exclusive or operator.
Moreover, if P = (x0, x1, ..., xr)

T then the binary representation of ϕ(P) is
ρ(x0)ρ(x1) . . . ρ(xr).

It means that if Q = P1 + P2 then ϕ(Q) = ϕ(P1)ˆϕ(P2).
This allows the computation of the sum of two points of PG(r, 4) by one

integer operation.
The multiplication of one point P by a scalar is applied only to the points of

the cap. It can be pre-computed before the beginning of the check for complete-
ness, so at the cost of having a data structure of size 3|C | all multiplications
by a scalar are avoided.

The other expensive operation of the algorithm in [7] is the normalization
of a point P . It should be to computed each time Q = αP1 + P2, P1, P2 ∈ C is
computed, i.e. 3/2|C |2 times. We propose a trade-off between computational
time and memory space: we use a vector U of size 3|PG(r, 4)| to keep trace of
the fact that a point Q is covered by C or not; initially all elements of U are set
equal to 0. When Q = αP1+P2 is computed, then the element ϕ(Q) is set equal
to 1 without before normalizing Q. In this way all the 3/2|C |2 normalization
operations are avoided. At the end, when the covering of all points of PG(r, 4)
is tested, first the normalized form of a point Q is tested checking the element
of U of position ϕ(Q); if it is not covered also ϕ(ωQ) and ϕ(ωQ) are checked:
if any of ϕ(Q), ϕ(ωQ), ϕ(ωQ) is equal to 1, then Q is covered.

Let be n = |C |, m = |PG(r, q)|, i = the size of an integer, c = the size of a
character. The total cost of our algorithm is:

space: 3n · i+ 3m · c+ c1;
time: 3c2n+ 3/2c2n

2 + 3c3m · c+ c4;

where c1, . . . , c4 are constants.
The algorithm has been implemented in C language.
Table 2 reports the time and space cost of the algorithm using an Intel(R)

Core(TM) i7-4510U CPU @ 2.00GHz; space is measured in megabyte, while
time is measured in milliseconds.

We tested the completeness of the caps presented in [7] in PG(r, q), r =
8, . . . , 12. Note that for constructing the 5124-cap in PG(9, 4) and the 36084-
cap in PG(11, 4) we were not able to obtain a cap following the selection of
columns suggested in [7, Section 3.2]. For the 5124-cap we had to exclude
the vectors for j ∈ {2, 14, 24, 25} instead of j ∈ {2, 14, 15, 24} as suggested
in the paper, whereas for the 36084-cap we had to exclude the vectors for
i ∈ {1, . . . , 16, 271} instead of i ∈ {1, 256, . . . , 271} as suggested in the paper.

3 Generalization of the algorithm

In the previous section we applied our algorithm in PG(12, 4). The key idea,
choosing a representation for the elements of Fq and the points of PG(r, q) that

Bartoli, Marcugini, Milani, Pambianco 323

Table 2: The time and space cost of the new algorithm

Size of cap 2136 5124 15840 36084 95256

Space (Mb) 5 18 76 324 1382

Time (Milliseconds) 32 78 707 3574 98321

minimize the computational cost of the operations most often performed during
the test of completeness of a cap, can be applied for every even q.

When testing the completeness of a cap C the value Q = αP1+P2, P1, P2 ∈
C , α ∈ Fq\{0} has to be computed.

To avoid to compute the same value αP several times, it is convenient to
compute it at the beginning of the algorithm and store the results. Therefore the
main operation to compute remains the sum between two vectors representing
points of PG(r, q).

When considering a representation of F2k , we can either choose a form that
facilitate the computation of multiplication (we see the non-zero elements of
F2k as powers of the primitive element) or can choose a form that facilitate
the computation of addition (we see the the elements of Fq as polynomials of
F2[X] of degree less than k; addition is defined in the natural way, whereas
multiplication is defined modulo a fixed irreducible polynomial of degree k).

We choose the latter representation and define ρ : F2k → {0, . . . , 2k − 1} as
ρ : p(x) 7→ p(2). We have that ρ(p(x) + q(x)) = ρ(p(x))ˆρ(q(x)), where ˆ is
the bitwise exclusive or. It means that in this representation addition on F2k

reduces to one bitwise arithmetic operation on integers.
Moreover we can define a representation of the points of PG(r, 2k) in the

following way:

ϕ : PG(r, 2k) → N,
ϕ : P 7→ ϕ(P),

where

P = (x0, x1, ..., xr)
T ,

ϕ(P) = (2k)rρ(x0) + (2k)r−1ρ(x1) + · · ·+ (2k)ρ(xr−1) + ρ(xr).

In this way a point P of PG(r, 2k) is represented by an integer n. If we
consider the binary representation of n, the coordinate xi is represented by the
bits of n in position (r−i)k+1 . . . (r−i+1)k that are the binary representation
ρ(xi). To compute ϕ(Q), Q = P1 + P2 it is sufficient computing ϕ(P1)ˆϕ(P2),
just one bitwise arithmetic operation. In a real implementation, usually an
(unsigned) integer has a 32 bit representation, so ϕ(P) can be represented by
a single integer if kr ≤ 32, otherwise more integers are needed.

324 ACCT2016

Our algorithm trades computational time for memory space. Let be n = |C |,
m = |PG(r, 2k)|, we need n(2k − 1) integers to represent αP , P ∈ C , α ∈
F2k\{0} and m(2k − 1) booleans to represent the fact that αP , P ∈ PG(r, 2k),
α ∈ F2k\{0} is saturated or not. As n < m, the latter value is more relevant.
If the memory requested by the algorithm is too big, then memory space can
be traded for computational time. For example the set of points of PG(r, 2k)
can be divided into s subsets small enough to be represented. Than the test for
completeness can be repeated s times; each time the completeness of the points
of one subset is tested. Note that the computations for the different subsets are
independent, so they can be performed in parallel. This is a form of parallelism
based on the splitting of data: it is simple and effective.

References

[1] D. Bartoli, J. Bierbrauer, S. Marcugini, F. Pambianco, Geometric Con-
structions of quantum codes. A.A. Bruen and D. Wehlau, Error-Correcting
Codes, Cryptography and Finite Geometries 523 (2010), 149–154.

[2] J. Bierbrauer, D. Bartoli, G. Faina, S. Marcugini, F. Pambianco, Y.
Edel, The structure of quaternary quantum caps, Des. Codes Cryptogr.
72 (2014), 733–747.

[3] J. Bierbrauer, Y. Edel, 41 is the largest size of a cap in PG(4, 4), Des.
Codes Cryptogr. 59 (1999), 151–160.

[4] J. Bierbrauer, Y. Edel, Quantum twisted codes, J. Combin. Des. 8 (2000),
174–188.

[5] J. Bierbrauer, G. Faina, M. Giulietti, S. Marcugini, F. Pambianco, The
geometry of quantum codes, Innov. Incidence Geom. 6 (2009), 53–71.

[6] R. Calderbank, E. M. Rains, P. W. Shor, N. J. A. Sloane, Quantum error
correction via codes over GF (4), IEEE Trans. Inform. Theory 44 (1998),
1369–1387.

[7] Q. Fu, R. Li, L. Guo, G. Xu, Large caps in projective space PG(r, 4), Finite
Fields Appl. 35 (2015), 231–246.

[8] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford
University Press, Oxford, 1985.

[9] J.W.P. Hirschfeld, L. Storme, The packing problem in statistics, coding
theory, and finite projective spaces: update 2001, in: A. Blokhuis, J.W.P.
Hirschfeld, D. Jungnickel, J.A. Thas (Eds.), Finite Geometries, Proceed-
ings of the Fourth Isle of Thorns Conference, in: Dev. Math., vol.3, Kluwer
Academic Publishers, Boston, 2000, pp. 201-246.

