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Abstract.We propose a concatenated code construction based on convolutional
codes. We prove that minimum distance of this construction equals product of free
distances of component codes.

1 Introduction

Using known codes to create a concatenated construction is an old known way
of creating a new code that usually has higher length and performs closer to
Shannon limit. Several ways of creating such codes are known, such as prod-
uct codes, concatenated codes, generalized concatenated and generalized error-
locating codes, (partial) unit memory codes, turbo codes and so on. On of
concatenation methods that is used in ITU-T Recommendation G.975.1 [2] for
LDPC super FEC code consists of using just two codes and encoding an infor-
mation vector by outer (nB, kB) code and then encoding this result with inner
(nA, kA) code, where kA = nB. In other words, is consists of applying two codes
sequentially, possibly with symbol permutation in between.

We consider similar coding scheme but with convolutional component codes.
We propose a lower bound of code distance for this code.

It is worth noting that this construction differs from product convolutional
codes [4]: in [4] authors made convolutional code based on two convolutional
codes. We consider a block code that uses terminated convolutional codes as
component codes and derive its block minimal distance.

2 Construction Description and Encoding

Let us describe construction in general. We consider this construction with two
component codes that can be the same code.

1This work has been supported by RScF, research project No. 14-50-00150.
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Let us write information symbols of this code as matrix:

I =

kB

kA

(1)

Encoding of the code is done as follows. At first we encode information
matrix in row-wise order by outer code:

IA = EncB(I) =

nB

kA

(2)

The result is stored in a matrix in row-wise order. Information sequence is
terminated in a usual way. White cells represent information symbols and grey
cells represent parity-check symbols. It is worth noting that all this matrices
are processed row-by-row by a single convolutional encoder. This differs, for
example, from the work [5] where authors considered encoding all rows by
several independent encoders.

Then we encode this matrix in column-wise order by inner code:

C = EncA(IA) =

nB

nA

(3)

The result is also stored in a new matrix in column-wise order, this matrix
is a codeword of this construction.

3 A bound on code distance

Let us introduce some designations:
RA = bA/cA — rate of inner code,
dA — free distance of inner code in binary symbols,
fA — maximum length of word (information sequence) of inner code that

has weight dA in blocks of code,
RB, bB, cB, dB, fB — the same for outer code.
Let us consider code construction where nA ≥ fAcA, nB ≥ fBcB. That

means that the longest word of minimal weight of outer/inner code fits in a
single row/column (probably with wrapping).
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At first let us consider a naive case. Suppose that information matrix I
generates a word of minimal weight in a first row of IA. That means that the
first row of IA stores a word of weight dB, all other rows equal zero. Since
nB ≥ fBcB this codeword occupies only the fist row.

Now we can consider encoding of the inner code. If we consider convolutional
code trellis, each time encoder touches zeroth state and goes trough several
subsequent zeroth state, it starts new independent codewors.

Any non-zero symbol at the input of the outer code can not yield code
sequence of weight less than dA and a sequence of such weight cant be longer
than fA symbols. At first we can suppose that columns are high enougth that
their encoding is done independently. Then code sequences of the inner code
that are generated by 1s in the first row will be placed in different columns
without overlapping. There are at least dB such sequences and each sequence
has weight of at least dA, which gives us lower bound on the weight of such
codeword: d ≥ dAdB.

Such code combination always exists. That means that this bound is strict,
d = dAdB.

This naive description does not account for dependency between subsequent
encoded columns. Let us now describe bound that accounts for these depen-
dencies.

Theorem 1. Exist such sizes nA and nB that Hamming distance of binary
block concatenated code based on two convolutional codes is d = dAdB, where
dA and dB are free distances of inner and outer codes respectively.

Proof. Encoding of the outer code is anyway just a plain encoding of the con-
volutional code. The first encoder takes information matrix I and encodes it in
row-wise order as shown in Eq. 1.

Any non-zero information matrix gives a matrix IA of weight greater or
equal to free distance of outer code dB. We have to chose nB ≥ fBcB to
guarantee that if the word has minimal weight then it fully fits in a single row
(up to an arbitrary shift that would cause wrapping). That means that each
non-zero element of IA is placed in different column. Look of such arrangement
is shown in Eq. 2 by colored matrix elements.

Now we need to consider encoding of outer codes. We have nB columns, at
least dB of them contain non-zero symbols. Encoding by the outer code is also
done sequentially but in column-wise order. We need to consider two options:
when the encoder goes through two consequent zero states while encoding con-
sequent columns or not.

• At first let us consider an option when decoder goes through two conse-
quent zero states in between encoding of consequent columns. That is a
simpler case since we can immediately say that encoding of the first and
of the second symbol of outer code codeword (or, equally, column of IA)
is independent. That means that each such symbol generates a sequence
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of weight of at least free distance of inner code dA. In order achieve this
we need to choose nA ≥ fAcA + 1 where addition of 1 is needed because
of possible wrapping.

• The second option is that the outer code generates such matrix IA that
decoder of the inner code doesn’t go through two consequent zero states.
That means that these two parts are dependent and we cannot use free
distance to estimate weight of the resulting codeword. To estimate it we
need active distances [3]. Active distances lower bound weight of a code
sequence generated by a coder that does not pass through two consequent
zero states. Authors proved that convolutional codes with active distances
that grow with sequence length and lower-bounded by a linearly increasing
function exist and also showed a couple of examples of known codes where
increasing active distances is seen, see fig. 1.

HÖST et al.: ACTIVE DISTANCES FOR CONVOLUTIONAL CODES 661

Fig. 2. The active distances for the encoding matrix in Example 2.

Theorem 2: Let be a generator matrix of memory .
Then its active segment distance satisfies the inequality

(24)
where and the sum of the lengths of the paths to the
right of the inequality is

(25)
i.e., equal to the length of the path to the left of the inequality.

The active segment distance is a nondecreasing function
of but, as we shall show in Section V, in the ensemble
of convolutional codes encoded by periodically time-varying
generator matrices there exists a convolutional code encoded
by a generator matrix such that its active segment distance can
be lower-bounded by a linearly increasing function.
The start of the active segment distance is the largest for

which and is denoted .
The th-order active row distance is characterized by a fixed

number of almost freely chosen information tuples, ,
followed by a varying number, between and , of zero-
state driving information tuples (“almost” since we have to
avoid consecutive zero states for
and assure that ). Sometimes we find it useful to
consider a corresponding distance between two paths of fixed
total length, , but with a varying number of almost freely
chosen information tuples. Hence, we introduce the following
(final) active distance.

Definition: Let be a convolutional code encoded by a
rational generator matrix of memory . The th-order
active burst distance is

(26)

where .

For a polynomial generator matrix we have the following
equivalent formulation:

(27)

where is given in (16).
The active row and burst distances are related via the

following inequalities:

(28)

Clearly, when , we have

undefined
. (29)

For a noncatastrophic generator matrix we have

(30)

From the definition it follows that the active burst distance
satisfies the triangle inequality.

Example 2: In Fig. 2 we show the active distances for the
encoding matrix

. Notice that the
active row distance of the zeroth order, , is identical to the
row distance of the zeroth order, , which upper-bounds

, and the start .

From the definitions follow that the active distances are
encoder properties, not code properties. However, it also
follows that the active distances are invariant over the set
of minimal-basic [4] (or canonical if rational) [5] encoding
matrices for a code . Hence, when we in the sequel consider
active distances for convolutional codes it is understood that

Figure 1: Example of active distances from [3].

Since we need two consequent columns to have weight of at least 2dA,
three columns to have weight 3dA and so on, we need to choose such nA

that row active distance

arj ≥ sdA, s ∈ 1, nB, (4)

where j = snA/cA. That can be easily done since arj can be lower-bounded
by linearly increasing function. Suppose that

arj ≥ uj + v (5)

Then we need

uj + v = u(snA/cA) + v = usnA/cA + v ≥ sdA (6)
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Asymptotically that yields unA/cA ≥ dA or, equivalently,

nA ≥ dAcA/u (7)

It can also be evaluated for all s ∈ 1, nB and maximum of nA from each
inequality needs to be chosen.

That means that if we choose such nA, then average weight of each non-
zero column will be more than or equal to dA. Average here is used in sense
that if we have s consequent dependent columns, we does not guarantee
that wt(each column) ≥ dA, but guarantee that wt(all columns) ≥ sdA.

That gives us lower bound on the code distance, d ≥ dAdB.
Example before the theorem proves that exist a codeword of weight strictly

dAdB. Therefore minimal distance of this construction with appropriate nA

and nB is d = dAdB.

It is worth noting that this theorem is only valid for convolutional compo-
nent codes. Since we do not know local properties of minimal-weight words of
block code, we do not know what code distance of similar construction based
on block codes would be.

4 Conclusion

We proposed a lower bound on code distance for binary block concatenated
code based on two convolutional codes. This construction differs from other
constructions of concatenated codes based on convolutional codes from one
side in sense that it is a block code (unlike convolutional code in [4]) and uses
one convolutional code for sequentially encoding all rows and one convolutional
code for sequentially encoding all columns (unlike code in [5] that uses separate
convolutional codes for all rows and columns).
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