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Abstract. Being evaluation codes, punctured Reed-Solomon (RS) and Gabidulin
(G) codes over the field Fqm with locators from the subfield Fq can be represented
as interleaving of m correspondent codes over the subfield Fq or can be considered
as virtual interleaving of m correspondent codes over the field Fqm . Using a prob-
abilistic unique syndrome decoder, m-interleaved or virtually interleaved codes can
be decoded up to the same radius m

m+1
(d − 1), where d is the code distance in

Hamming metric for RS codes and in rank metric for G codes. We show that the
correspondent decoders over the subfield Fq and the field Fqm are equivalent and
conclude that in practice one should use a decoder over the subfield since it has less
complexity.

1 Introduction

Reed-Solomon (RS) [1] and Gabidulin (G) [2] codes belong to the family of eval-
uation codes and are widely used for error correction in many applications. An
evaluation code over the finite field Fqm is constructed by evaluating all poly-
nomials with coefficients from Fqm of restricted degree at a set of code locators.
By choosing the code locators from the subfield Fq we obtain a punctured eval-
uation code over Fqm which can be equivalently interpreted as an m-interleaved
code I over the subfield Fq [3].

It is known that m-interleaved RS and G codes over Fq with distance d
can correct with high probability up to m

m+1(d− 1) errors in the corresponding

metric [4,5]. In [6,7] it was shown that the same decoding radius can be achieved
by computing element-wise q-powers of the received word at the decoder. This
results in a received word V of a virtually m-interleaved code V over the large
field Fqm . Virtual interleaving with usual powers was originally proposed in
[8] and was modified to q-powers in [6]. For both decoding schemes either a
syndrome- or interpolation-based decoder can be used.

In this paper we analyze and compare probabilistic unique syndrome-based
decoding algorithms for interleaved and virtually interleaved RS and G codes.
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We show that the syndrome-based decoder of the code I over the subfield Fq is
equivalent to the respective decoder of V in the field Fqm . This means, that for
the same input the decoders return the same output and shows, that the decod-
ing failure probability is the same for both decoders. It allows us to choose the
decoder with the lowest computational complexity, i.e., the respective decoder
over the subfield Fq. The extended version of the paper with proofs is available
online at http://goo.gl/NL78P5.

2 Preliminaries

Let Fh be a finite field, where h is a power of a prime. Let Fq and Fqm be

extensions of Fh. By the column vector a =
(
a(0)a(1). . . a(m−1)

)
T ⊂ Fm

q we
denote the expansion of an element a ∈ Fqm w.r.t. a fixed basis of Fqm over
Fq. Given a vector a of length n over Fqm , we introduce the m × n expansion
matrix over Fq as a = (a0, . . . , an−1).

By Fqm[x] we denote the ring of all polynomials g(x) =
∑d

i=0 gix
i over Fqm

and Fqm[x]<k is the set of all polynomial from Fqm[x] with degree less than k.

A nonzero polynomial of the form p(x) =
∑d

i=0 pix
[i], where [i] denotes the

i Frobenius power [i] = hi, with pi ∈ Fqm , pd 6= 0, is called an h-linearized
polynomial of h-degree degh(p(x)) = d. By Lqm[x] we denote the ring of all h-
linearized polynomials over Fqm and Lqm[x]<k denotes the set of all polynomials
from Lqm[x] with h-degree less than k.

RS and G codes belong to a class of evaluation codes, which are defined as
follows.

Evaluation code. Assume 0 < k ≤ n and m ≥ 1 are integers. Given an
n-vector of code locators α = (α0 α1 . . . αn−1) over Fqm and a set P(m) of
polynomials f(x) over Fqm , where P(m) = Fqm[x]<k or P(m) = Lqm[x]<k. We
define f(α) = (f(α0) f(α1) . . . f(αn−1)). The evaluation code Cev is the set of
all n-words

Cev(n, k,α,P(m)) = {f(α) | f ∈ P(m)} (1)

obtained by evaluating all polynomials f from P(m) at the locators α. RS and
G codes can be defined as follows.

Reed-Solomon code. If the locators αi are pairwise different and P(m) =
Fqm[x]<k, then the code Cev is an [n, k] linear Reed-Solomon code over Fqm with
code distance d = n− k + 1 [1] in Hamming metric.

Gabidulin code. Assume that the locators αi are Fh-linearly independent.
Let P(m) = Lqm[x]<k, then Cev is an [n, k] linear Gabidulin code over Fqm with
code distance d = n− k+ 1 [2] in rank metric. The rank distance between two
n-words v,w over Fqm is defined as rk(v −w) over Fh.

In general, RS and G codes with locators from the field Fqm can correct
errors of weight up to (d − 1)/2 in the correspondent metric. It is known [3]
that it is possible to correct with high probability more errors if we puncture the
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codes and take locators from the subfield Fq only. Now we introduce (proper)
punctured codes.

Punctured evaluation code. The evaluation code (1) over Fqm is called proper
punctured if all locators αi belong to the subfield Fq. Later on we consider
proper punctured codes only and call them simply ”punctured”. This gives us
definitions of punctured RS and punctured G codes as well.

Interleaved codes over small field Fq (Scheme I). Let us show that a punc-
tured evaluation code over the large field Fqm with locators αi ∈ Fq is equivalent
to interleaving ofm evaluation codes over the subfield Fq [3]. Let f(x) =

∑
i fix

i

be a polynomial from P(m). By representing each coefficient fi by fi we can

write one polynomial f(x) ∈ P(m) as m polynomials f (j)(x) =
∑

i f
(j)
i xi ∈

P(1), ∀j ∈ [0,m − 1]. Now every codeword of the punctured evaluation code
(1) can be written over the small field Fq as c = f(α)⇒ f (0)(α)

...
f (m−1)(α)

=

 f (0)(α0) · · · f (0)(αn−1)
...

...
...

f (m−1)(α0) · · · f (m−1)(αn−1)

def
= I. (2)

Since f (j)(x) ∈ P(1) for all j, every row in the m × n matrix I over Fq in (2)
is a codeword of Cev(n, k,α,P(1)). Hence I is obtained by interleaving of m
codewords from Cev(n, k,α,P(1)). This means that every codeword f(α) ∈ Fn

qm

of the code Cev(n, k,α,P(m)) can be written as interleaving I of m codewords
from Cev(n, k,α,P(1)).

Virtual interleaving over the field Fqm (Scheme V). Consider a codeword c =
(c0 c1 . . . cn−1) = f(α) of a punctured evaluation code Cev(n, k,α,P(m)) with

locators αi ∈ Fq and compute the element-wise q-powers cq
j

= (cq
j

0 cq
j

1 . . . cq
j

n−1).

For f(x) =
∑

i fix
i ∈ P(m) denote a bijective map f → f q

j
where f q

j
(x) =∑

i f
qj

i x
i ∈ P(m). Since ci = f(αi) where αi ∈ Fq for all i ∈ [0, n− 1] and f ∈

P(m), we have cq
j

i = (f(αi))
qj = f q

j
(αi). Hence cq

j ∈ Cev(n, k,α,P(m)) and

from one codeword c we can virtually create m codewords cq
j

for j ∈ [0,m−1].
These m codewords form an m × n matrix V over the big field Fqm of the
virtually m-interleaved code c = f(α)⇒ f q

0
(α)...

f q
m−1

(α)

=

 f q
0
(α0) · · · f q

0
(αn−1)...

...
...

f q
m−1

(α0) · · · f q
m−1

(αn−1)

def
= V. (3)

Notice that in the case of virtual interleaving V , we still transmit just one
codeword c = f(α) of the original punctured code and receive one word y

corrupted by errors. One can think that the rest m − 1 codewords cq
j

were
virtually transmitted as well. The correspondent m − 1 received words can

be computed at the receiver as yqj . For the Hamming metric t errors in the
received word y will induce t erroneous columns in the virtually received matrix
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V . If the received word y is corrupted by an error of rank t then matrix V will
be corrupted by an error of rank t as well.

What can we gain using I or V interleaving? It is known [4,5] that decoding
of an s-interleaved code with distance d can be done up to the radius m

m+1(d−1)
with high probability. Hence we can increase the decoding radius almost twice if
we use probabilistic decoders I or V instead of decoding the original punctured
code up to radius (d−1)/2. Any known syndrome-based decoder for interleaved
codes can be applied to get this gain. However, the complexity of operations
increases with the field size. This is a disadvantage of Scheme V. Can we gain
something using Scheme V instead of I? For example, if a syndrome decoder
is used with Scheme I it will fail with probability at most (field size)−1 = 1/q.
Does it mean that the failure probability of Scheme V over the large field Fqm

is smaller than the one of Scheme I as it is claimed in [7]? In the next section
we will describe decoders for I and V matrices, analyse and compare them.

3 Syndrome Decoding of Punctured Reed-Solomon
and Gabidulin Codes

Consider a proper punctured evaluation code Cev(n, k,α,P(m)) which is a RS
or G code over the field Fqm with locators αi from the subfield Fq. Since αi ∈ Fq

a parity check matrix H of the code is also over the subfield Fq. Let a codeword
c ∈ Cev be transmitted and an n-word y over Fqm be received. Then the error
vector in the channel is e = y − c and the number of errors t is the Hamming
weight of the error e in case of RS code and t = rk(e) for G code. Given received
word y, the unique decoder should output a codeword or declare a failure.

A syndrome decoder first computes the syndrome vector s = yHT ∈ Fn−k
qm .

If the syndrome s = 0 then y is a codeword, otherwise for s 6= 0 the following
key equation (6) must be solved [9, 10]. Define the field automorphism θ as

θ(a)
def
=

{
a for RS codes
ah for G codes

(4)

and the reversed syndromes for i ∈ [0, d− 2] as

si
def
=

{
si for RS codes

θi−(d−2)(sd−2−i) for G codes
. (5)

Key equation.

si = −
t∑

j=1

σjθ
j(si−j), i = [t, d− 2]. (6)

To solve the key equation means to find minimum integer t > 0 such that (6)
has a solution σ = (σ1, . . . , σt). If the solution is not unique the decoder fails.
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Otherwise it forms the error locator polynomial

σ(x) =

{
1 + σ1x+ · · ·+ σtx

t ∈ Fqm[x] for RS codes

x+ σ1x
h + · · ·+ σtx

ht ∈ Lqm[x] for G codes
. (7)

Having the error locator polynomial it is easy to find the error vector e using
known approaches, e.g. in [9, 10], and to compute the codeword c = y − e.

So, the main part of the decoder is solving the key equation, which can be
done by solving the linear system of equations (6) with coefficients from Fqm for
t = 1, 2, .... This can be done by standard linear algebra resulting in a decoding
algorithm which always corrects up to d/2 errors, but we would like to correct
more errors using a probabilistic decoder as follows.

Locators αi of punctured codes belong to the subfield Fq. Since the roots of
an error locator polynomial belong to the subfield Fq of code locators, the coeffi-
cients of the error locator polynomial σ(x) also belong to Fq and we should find
unknowns σi in (6) from the subfield Fq. This allows to write more equations
and as a result to correct more errors using Schemes I or V as follows.

Key equation over subfield, Scheme I. We receive the vectort y, i.e. the
matrix y with m interleaved words y(`) over Fq. The syndromes s(`) can be

computed as s(`) = y(`)HT because H is over Fq. Since error locators are
common for interleaved words [5, 11], we can write the key equation (6) for

each syndrome s(`) with the common error locator σ(x) and get the following
system of equations over the subfield Fq

s
(`)
i = −

t∑
j=1

σjθ
j
(
s
(`)
i−j

)
, i = [t, d− 2], ` = [0,m− 1]. (8)

Key equation for virtual interleaving, Scheme V . The syndromes sq
`
, ` =

[0,m−1], can be computed from m virtually received words yq` as yq`HT = sq
`

since H is over Fq. Virtual error vectors yq`−cq` = eq
`

have the same weight t
and common error locations. Hence we can write the key equation (6) for each

syndrome sq
`

with common error locator σ(x) and get the following system of
equations over the field Fqm

sq
`

i = −
t∑

j=1

σjθ
j
(
sq

`

i−j

)
, i = [t, d− 2], ` = [0,m− 1]. (9)

Lemma 1 Given a vector s 6= 0 over Fqm and integer 0 < t < d−1, a solution
σI of (8) is unique if and only if (9) has a unique solution σV . In this case
σI = σV is a vector over Fq.

This means that for fixed received word y both decoders I and V will find the
same error locator polynomial in case when (8) and (9) have unique solution and
output the same result, otherwise both decoders will fail. Hence the decoders
are equivalent and we get the following theorem, where we assume that the
errors e of weight t have equal probability to estimate failure probabilities.
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Theorem 1 For punctured RS and G codes unique probabilistic syndrome de-
coders of Schemes I and V are equivalent having decoding radius tmax = m

m+1(d−
1), and decoding complexity O(mn2) operations in the field Fq for Scheme I and

in Fqm for Scheme V. Decoding failure probability Pf (t) ≤ γq−(m+1)(tmax−t)−1,
where t is error weight, γ ≤ 3.5 and γ ≈ 1 for RS codes.

Using fast operations, decoding can be further accelerated to sub-quadratic
complexity. The obtained results are directly applied to correcting errors and
erasures. Without establishing equivalence it is not easy to estimate the failure
probability for Scheme V which can lead to incorrect conclusions [7].
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