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Abstract. In this paper pseudorandom number generators based on block ciphers
in counter mode are investigated. An idealized abstraction is applied which models
the block cipher as a random permutation. We computed the number of output
sequences of the idealized generators and estimated the conditional probability for
the next element to appear given the prefix. In particular, we computed lower and
upper bounds for that conditional probability.

1 Introduction

Deterministic pseudorandom number generators (PRNG) are important and
useful cryptographic tools. Their construction can be dedicated or based on
different cryptographic primitives [1], e.g. hash-functions or block ciphers. The
PRNG we investigate is based on block ciphers in counter mode of operation [2],
and it is considered as a candidate for standardization in Russia [3]. As a
counterpart of it we also consider a well-known CTR DRBG generator described
in ISO/IEC 18031 [1] standard, which is based on one block cipher.

Since typically it is quite difficult to determine or even estimate the prop-
erties of real PRNGs, we focused on the properties of the constructions itself
modeling block ciphers with random keys as random permutations. Under this
assumption we were able to compute the number of different output sequences
of the PRNGs, and estimate conditional probability for the next element of the
generator to appear provided the previous elements of the sequence are known.

2 PRNGs Description

Let Vn be the set of all binary strings (vectors) of length n with the bitwise
eXlusive OR addition defined on it. To every string zn−1||zn−2|| . . . ||z0 from Vn

we put into one-to-one correspondence the integer 2n−1zn−1 + . . .+2z1 + z0. In
what follows we do not distinguish strings and numbers.

Let E(K,M) be a mapping of a block cipher encrypting a message M ∈
Vn with a secret key K ∈ Vk, and let E−1(K, M) be the inverse decrypting
mapping.
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Consider two PRNGs, say G1 and G2, based on block ciphers in counter
mode. For both generators the counter count is initialized by a randomly and
uniformly chosen IV ∈ Vn, and as the input an integer m and a secret key K
are given. The output will be n-bit symbols x1, x2, . . . , xm.

G1: for i from 1 to m do:
xi := E(K, count); count := (count + 1) mod 2n.
This is essentially the widely used in practice CTR DRBG generator [1].
G2 [3]: for i from 1 to m do:
xi := E(K, count)⊕ E−1(K, (count + 1) mod 2n);
count := (count + 1) mod 2n.
The output sequences of both generators are evidently have a period of 2n.

In the following, we consider output sequences of length equal to this period.

3 PRNGs Properties

3.1 An Idealized Model for Generators

Let us idealize the generators by making two important assumptions.

Assumption 1. Encryption (decryption) procedure of an n-bit block cipher
with random key is modeled as a random permutation σ on Vn..

Assumption 1 could hardly be strictly justified. The cardinality of the set
of all permutations on Vn is (2n)!, while a block cipher with k-bit key can give
at most 2k of them. However, this particular assumption is frequently used for
proving the security of cryptographic constructions involving block ciphers.

Assumption 2. Encryption and decryption procedures of a block cipher with
the same random key are assumed to be independent, so they are considered to
be two random and independent permutations σ1 σ2 on Vn.

Block cipher encryption and decryption with the same key are the inverse
operations, so they are dependent. However, the independence quite easily
could be achieved, e.g. by taking two different ciphers or two independent keys.

In the rest of the paper, we call G1 with applied Assumption 1 to be the
generator G1I, while G2 with both assumptions applied to be G2I.

Initializing Value. For G2I the permutations are chosen from the set of all
permutations on Vn. Therefore G2I with permutations σ1 and σ2 and some
initializing value IV could equivalently be considered as G2I with permutations
σ∗1 and σ∗2, and IV = 0:

σ∗1(i) = σ1

(
(IV + i) mod 2n

)
, σ∗2(i) = σ2

(
(IV + i+1) mod 2n

)
, ∀i ∈ Vn.

The same is true for G1I. Thus the real IV for the idealized generators is not
important, need not be kept secret, and can always be put to 0. Note that for
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G1 and G2 the situation is more complicated, since σ∗ would not necessarily
belong to the set of permutations defined by the block cipher.

3.2 G1I Properties

One of the most important properties of PRNGs is unpredictability of output
symbols. For an ideal RNG with output alphabet of size N the conditional
probability for the next symbol to appear is 1

N and coincides with the marginal
probability since that generator is memoryless with all symbols are equally
likely.

Output Sequences. Denote |Vn| = 2n = N . Since an output sequence of
G1I of length N consists of all values of any permutation on Vn, then the total
number of different output sequences of G1I is exactly N !

Conditional Probability. Let us estimate conditional probability
P (as+1|as, as−1, . . . , a1) for a symbol as+1 to appear provided s previously out-
put symbols are known. Evidently, for s = 1 the probability is 1

N .
For s < N due to the bijectivity of permutations we have

P (as+1|as, as−1, . . . , a1) =

{
0, if as+1 ∈ {as, as−1, . . . , a1};

1
N−s , otherwise.

3.3 G2I Properties

Output Sequences. Once again assume |Vn| = 2n = N . For any permuta-
tion σ on Vn it holds that

⊕
i∈Vn

σ(i) = 0. Then for any two permutations σ1

and σ2 it is true that
⊕

i∈Vn

(σ1(i)⊕ σ2(i)) = 0. (1)

From (1) it follows that if we know any N −1 output symbols of G2I, then the
N -th symbol can be computed as their bitwise sum. So G2I can output no more
than NN−1 different sequences. To compute the exact number of sequences we
use a theorem from [4], which for our notation can be reformulated as follows.

Theorem 1. For any sequence of elements b0, b1, . . . , bN−1, bi ∈ Vn, i =
0, N − 1, N = 2n, satisfying the condition

N−1⊕

i=0

bi = 0, (2)

there exists at least one pair of permutations σ1, σ2 on Vn

such that bi = σ1(i)⊕ σ2(i).
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From this theorem it immediately follows that G2I can output any sequence
b0, b1, . . . , bN−1 satisfying (2). This in turn means that any N − 1 out of N
output symbols can take arbitrary values from Vn. So the total number of
different output sequences of G2I is exactly NN−1.

Equivalent Representation. To estimate conditional probability for G2I
we give an equivalent description of how the next output symbol is generated.

Definition 1. For any two permutations σ1 and σ2 on Vn the sequence
u0, u1, . . . , uN−1, ui ∈ Vn, is called the sum of σ1 and σ2 if

ui = σ1(i)⊕ σ2(i), ∀i = 0, N − 1

Consider now a matrix M(i, j) = i⊕ j, i = 0, N − 1, j = 0, N − 1.

Definition 2. A sequence of pairs (i0, j0), (i1, j1), . . . , (iN−1, jN−1), il, jl =
0, N − 1, ik 6= it, jk 6= jt for any k 6= t, is called a trajectory on matrix M.

Definition 3. The sequence M(i0, j0),M(i1, j1), . . . ,M(iN−1, jN−1) is called
the output of the trajectory (i0, j0), (i1, j1), . . . , (iN−1, jN−1).

Proposition 1. Between the set of ordered pairs of permutations on Vn and
the set of trajectories on matrix M a one-to-one correspondence can be defined
so that the sum of the pair of permutations will coincide with the output of the
corresponding trajectory.

Proof. Any two permutations σ1 σ2 on Vn induce the trajectory

(σ1(0), σ2(0)), (σ1(1), σ2(1)), . . . , (σ1(N − 1), σ2(N − 1)).

Conversely, for any trajectory (i0, j0), (i1, j1), . . . , (iN−1, jN−1) there exists a
unique pair of permutations σ1 and σ2 such that

(i0, j0), . . . , (iN−1, j1−1) = (σ1(0), σ2(0)), . . . , (σ1(N − 1), σ2(N − 1))

Suppose that a sequence u0, u1, . . . , uN−1 is the sum of two permutations
σ1 and σ2. Consider the output of the corresponding trajectory on M:

M(σ1(0), σ2(0)),M(σ1(1), σ2(1)), . . . ,M(σ1(N − 1), σ2(N − 1)) =

= σ1(0)⊕ σ2(0), σ1(1)⊕ σ2(1), . . . , σ1(N − 1)⊕ σ2(N − 1) = u0, u1, . . . , uN−1.

Proposition 1 gives us an equivalent description of how a symbol is generated
by G2I. The next output symbol of G2I is some element selected from M,
moreover after the selection we strike out the row and column containing that
element since only one element from any row and any column can be selected.

Note that the number of different trajectories on M is (N !)2 while there are
NN−1 different outputs of trajectories. For N ≥ 2 it holds (N !)2 > NN−1, so
there definetly exist different trajectories giving the same output.
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Conditional Probability. Let us estimate P (as+1|as, as−1, . . . , a1) for G2I.
Consider the case s < N

2 . The prefix as, as−1, . . . , a1 is an output of some partial
trajectory T (s) = (i0, j0), (i1, j1), . . . , (is−1, js−1). This means that some s rows
and s columns were struck out from M. Hence the next symbol as+1 could be
chosen from the remaining (N − s)× (N − s) matrix L.

Any row (column) of M contains each symbol exactly once. So in the s
struck out rows (columns) every symbol were deleted s times. Consider an
s × s matrix L∗ which lies on the intersection of the struck out columns and
rows. Assume that the symbol as+1 occurs ξ times in L∗. Obviously 0 ≤ ξ ≤ s.
Therefore the number of as+1 in L is N − 2s + ξ, and P (as+1|T (s)) = N−2s+ξ

(N−s)2
.

A fixed prefix can be obtained by different partial trajectories Tt(s) = Tt

on M each of which leads to its own L. Since all the events of having Tt are
disjoint, we obtain P (a1, . . . , as) =

∑
t P (Tt), where the sum is over all Tt giving

a1, . . . , as as an output. From Bayes’ rule we get:

P (as+1|as, . . . , a1) =
P (as+1, . . . , a1)
P (as, . . . , a1)

=

∑
t

P (as+1, Tt)
∑
t

P (Tt)
=

∑
t

P (as+1|Tt)P (Tt)
∑
t

P (Tt)
.

It is unknown how many different Tt lead to as, . . . , a1. However, from the
above formula it follows that as upper and lower bounds on P (as+1|as, . . . , a1)
we can take the upper and lower bounds on P (as+1|T (s)) bounding ξ. Thus,

P1 =
N − 2s

(N − s)2
≤ P (as+1|as, as−1, . . . , a1) ≤

N − s

(N − s)2
= P2.

Let us estimate how many different as+1 might have the conditional prob-
ability equal to P1. Consider an (N − s)× s matrix Z which is the struck out
columns except the matrix L∗. The symbols corresponding to P1, say there are
z1 of them, are those which occur in Z exactly s times. Trivially there are
z1 ≤ (N−s)s

s = N − s such symbols.
Estimate now how many different as+1 might have the conditional proba-

bility equal to P2. The symbols corresponding to P2, say there are z2 of them,
are those which do not occur in Z at all. Therefore Z is filled with at most
N−z2 other symbols each of which can occur no more than s times. So it must
be (N − z2)s ≥ (N − s)s, and z2 ≤ s.

4 Generators Comparison and Conclusion

4.1 Comparison

Sequences. The G1I generator can output N ! different sequences, G2I can
output NN−1 sequences, while an ideal RNG could output all NN possible
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sequences. Using Stirling’s approximation we obtain

N !
NN−1

≈
√

2πN ·NN

eN

N

NN
=

N
√

2πN

eN
= e−(N−ln N

√
2πN).

So concerning the output sequences G2I is far better than G1I, and is close to
an ideal RNG. Moreover, up to the length N −1 G2I can output any sequence.

Probabilities. The deviation of conditional probability for the next output
symbol to appear given a prefix from 1/N , which corresponds to an ideal RNG,
is an important cryptographic property of PRNGs. For G1I after s steps this
probability takes two values 0 and 1

N−s , while the latter value corresponds to
exactly N − s symbols.

The G2I generator is closer to an ideal one: for s < N
2 the conditional

probability can take values from P1 = N−2s
(N−s)2

(for no more than N −s symbols)
up to P2 = 1

N−s (for no more than s symbols). Observe also that P2 − 1
N =

s
N(N−s) and 1

N − P1 = s2

N(N−s)2
. Therefore P1 < 1

N < P2 for any s.

4.2 Conclusion

In this paper, we considered PRNGs based on block ciphers working in counter
mode of operation. To evaluate the properties of the PRNGs we idealized them
by replacing block ciphers with a random secret key by random permutations.
And at the same time we considered the encryption and decryption procedures
to be independent. The qualitative conclusion is that the idealized PRNG on
two block ciphers reveals better characteristics in terms of the number of output
sequences and conditional probability for the next symbol to appear than those
on one block cipher. This clearly justifies the doubled computational complexity
required to produce the next symbol in the two-cipher generator.
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