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Characterization of Highly Divisible Arcs!
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Abstract. We prove that if the restriction of a (¢ mod g)-arc K to every hyperplane
is a lifted arc then [ is itself lifted. We use this result to prove that all (2 mod g)-
arcs in PG(r, q), r > 3, are lifted.

1 Introduction

Let I be an (n,w)-arc with spectrum (a;) It is said to be divisible with divisor
A>1ifa;=0for all i Zn (mod A). If the arc K satisfies w =n +¢ (mod q)
and a; =0foralli Zn,n+1,...,n+t (mod A), 1 <t < g—1, we say that it
is t-quasidivisible with divisor A > 1 (or t-quasidivisible modulo A). Let ¢ be
a fixed non-negative integer. An arc K in ¥ is called a (¢ mod g)-arc if

(1) for every point P € P, K(P) < t;

(2) for every subspace S of dimension at least 1, (S) =t (mod q).

It turns out that (f mod g¢)-arcs arise naturally as duals of ¢-quasidivisible
arcs. Let K be a t-quasidivisible (n,w)-arc with divisor ¢ in X, ¢t < ¢g. Denote

by K the arc

= [H — {0,1,...,t}

where H is the set of all hyperplanes in ¥. This means that hyperplanes of
multiplicity congruent to n + a (mod ¢) become (¢ — a)-points in the dual ge-
ometry. I Then K is a (t mod g¢)-arc [5,8]. For a more detailed introduction
to arcs and blocking sets and their relation to linear codes, we refer to [1,4].
The aim of this talk is to present various constructions and structure results
for (¢ mod g¢)-arcs. Section 2 contains general constructions for (t mod g)-arcs.
The most important is the so-called lifting construction, which is partly due to
the fact that in dimension higher than 3 the only known (¢ mod g)-arcs are
sums of lifted arcs. In section 3, we prove that every (2 mod g)-arc is lifted.
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This result implies Maruta’s extendability result for linear codes with weights
—2,—1,0 mod ¢ for ¢ odd. In section 4, we characterize the (3 mod 5)-arcs
of small cardinality and prove that every (3 mod 5)-arc in PG(3,5) of size not
exceeding 153 is lifted.

2 General Constructions

We start with a straightforward observation.

Theorem 1. Let Fy (resp. F2) be a (t1 mod q)-arc (resp. (t2 mod q)-arc) in
PG(r,q). Then Fi1 + F2 (mod q) is a (t mod q) arc with t =t +t2 (mod q),
provided all points in the sum have multiplicity at most t. In particular, the
sum of t (not necessarily different) hyperplanes is a (t mod q)-arc.

The next construction is less obvious.

Theorem 2. Let Fy be a (t mod q)-arc in a hyperplane H = PG(r — 1,q) of
Y. = PG(r,q). For a fized point P € ¥\ H, define an arc F in 3 as follows:

- F(P)=t;

— for each point Q # P: F(Q) = Fo(R) where R = (P,Q) N H.
Then the arc F is a (t mod q)-arc in PG(k — 1,q) of size q|Fo| +t.

We call the (¢ mod g)-arcs obtained by Theorem 2 lifted arcs and the point
P — a lifting point.
It turns out that the lifting points of a (f mod ¢q) arc form a subspace.

Lemma 1. Let the arc F be lifted from the points P and Q, P # Q. Then F
1s also lifted from any point on the line PQ. In particular, the lifting points of
a (t mod q)-arc form a subspace S.

The sum of ¢ hyperplanes can be viewed as the sum of lifted arcs. Remark-
ably, we do not know an example of a ({ mod g)-arc in PG(r,q), with r > 3,
that is not the sum of lifted arcs. It turns out that if in the geometry PG(r, q)
there exist only lifted (¢ mod g¢)-arcs then every (¢ mod ¢)-arc in PG(r’, q)),
r’ > r, is also lifted.

Theorem 3. Let K be a (t mod q)-arc in PG(r,q) such that the restriction
K|u to every hyperplane H of PG(r,q) is also lifted. Then K is a lifted arc.

In the plane case, non-trivial (¢ mod g)-arcs can be constructed as o-duals
of certain blocking sets. Let K be a multiset in 3. Consider a function ¢ such
that o(KC(H)) is a non-negative integer for all hyperplanes H. The multiset

o, H — Np
* { H o~ o(k(H) @)



Rousseva, Landjev 269

in the dual space Y is called the o-dual of K. If o is a linear function, the param-

eters of IE", as well as its spectrum, are easily computed from the parameters
and the spectrum of IC (cf. [1,8]).

Theorem 4. [6,7] Let F be a (t mod q)-arc in PG(2,q) of size mq+t. Then
the arc F° with o(x) = (x —t)/q is a (m — t)q + m, m — t)-blocking set in the
dual plane. Moreover the multiplicities of the lines with respect to this blocking
set belong to {m —t,m —t+1,...,m}.

3 (2 mod g)-arcs

Let us note that an (1 mod ¢) arc is projective and hence either a hyperplane
or the complete space [2,3]. For t = 2 and odd ¢ > 5, the (¢ mod ¢)-arcs were
characterized by Maruta [7]. These are the following:

(I) a lifted arc from a 2-line; such an arc has 2¢ + 2 points and there exist
two possibilities

(I-1) a double line, or

(I-2) a sum of two different lines;

(IT) a lifted arc from a (g + 2)-line; such a line has i double points, ¢ — 2i + 2

single points and ¢ — 1 O-points, where ¢ = 1,..., %1; we say that such

an arc is of type (II-i) if it is lifted from a line with ¢ double points;

(III) a lifted arc from a (2g + 2)-line, or, which is the same, the sum of two
copies of the same plane;

(IV) an exceptional (2 mod g)-arc for ¢ odd; it consists of the points of an
oval, a fixed tangent to this oval, and two copies of each internal point
of the oval.

The following lemma is proved by investigating in some detal the types of
lines in the different plane (2 mod g)-arcs.

Lemma 2. Let K be a (2 mod q)-arc in PG(3,q), q odd, and let there exist a
plane 7 such that K| is of type (IV). Then K is a lifted arc.

Now we proceed by induction on the dimension. Again by Theorem 3 we
get that every (2 mod g)-arc in a geometry of dimension at least 3 is lifted.

Theorem 5. Let K be a (2 mod q)-arc in PG(r,q), q odd, r > 3. Then K
is a lifted arc. In particular, every (2 mod q)-arc in PG(r,q), r > 2, has a
hyperplane in its support.



270 ACCT2016

Remark. Theorem 5 provides alternative proof of Maruta’s theorem on the
extendability of codes with weights —2, —1,0 (mod ¢) [10]. The existence of
such a code is equivalent to that of an arc K which is 2-quasidivisible modulo q.
It was pointed out in [6,7] that for every t-quasidivisible arc K in X it is possible
to define uniquely a (¢t mod ¢)- arc K in the dual geometry. If K contains a
hyperplane in its support then K is extendable. This is the fact established in
Theorem 5.

4 (3 mod g)-arcs

For values of t larger than 2 complete classification seems out of reach. How-
ever, it is still possible to obtain partial results on the structure of such arcs. In
this section we classify some small (3 mod 5)-arcs in PG(2,5). Due to Theo-
rem 4, the classification of such arcs is equivalent to the classification of certain
blocking sets with an additional restriction on the line multiplicities.

Arcs of cardinality 18. These correspond to the sum of three not necessarily
different lines in various mutual positions. It is an easy check that there exist
for (3 mod 5)-arcs of cardinality 18 [6].

Ares of cardinality 23. These arcs correspond to (9, 1)-blocking sets with lines of
multiplicity 1, 2, 3, 4. The only possibility is the projective triangle. Dualizing
we get a (3 mod 5-arc in which the 2-points form a complete quadrangle, the
intersections of the diagonals are 3-points and the intersections of the diagonals
with the sides of the quadrangle are 1-points.

Ares of cardinality 28. The only (3 mod 5)-arc of cardinality 28 has six 3-points
forming an oval and ten 1-points that are the internal points to this oval.

Ares of cardinality 33. If F is such an arc then F7 is a (21, 3)-blocking set with
line multiplicities 3,4,5,6. Again such a blocking set cannot have points of
multiplicity 3 or larger since this would impose lines of multiplicity larger than
6 in F. Denote by A; the number of points of multiplicity 7. Constructions are
possible for Ay = 0,1,2 constructions are possible. In such case, F? is one of
the following:

(1) the complements of the seven non-isomorphic (10, 3)-arcs; Ag = 0;

(2) the complement of the (11,3)-arc with four external lines and a double
point a point not on an external line, Ay = 1;

(3) one double point which forms an oval with five of the 0O-points; the
tangent in the 2-point is a 3-line, Ay = 1;

(4) PG(2,5) minus a triangle with vertices of multiplicity 2,2, 1; Ay = 2.
Ares of cardinality 38. The (3 mod 5)-arcs of cardinality 38 can be derived
from the (27,4)-blocking sets with line multiplicities 4, 5,6, 7 in PG(2,5). Such
a blocking set does not have 3-points and the number. Furthermore, if there
exist three collinear 2-points then Ao = 3 and the corresponding line is a 7-line.
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There exist a lot of such blocking sets and, consequently, (3 mod 5)-arcs of
cardinality 38. In all cases, such arcs have a 13-line with a 0-point or an 8-line
of type (2,2,2,2,0,0), (2,2,2,1,1,0) or (3,3,2,0,0,0).

For instance, in the case of Ay = 0 the blocking set consists of all points in
the plane minus four points in general position. The corresponding (3 mod 5)-
arc has a line of type (2,2,2,1,1,0). In the case Ay = 6 the 2-points form an
oval. Th external points to this oval have to be blocked at least four times by
the fifteen 1-points. An easy counting gives that we should take necessarily the
ten internal points plus five external points. But now the six tangents cannot
be blocked twice by six points not on the oval. The remaining cases are treated
using similar arguments.

Now we state our main result for this section.

Theorem 6. Every (3 mod 5)-arc F in PG(3,5) with |F| < 158 is a lifted
arc. In particular, |F| = 93,118, or 143.
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