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Abstract. We obtain several classes of completely regular codes with different
parameters, but identical intersection array. Given a prime power q and any two
natural numbers a, b, we construct completely transitive codes over different fields
with covering radius ρ = min{a, b} and identical intersection array, specifically, we
construct one code over Fqr for each divisor r of a or b. As a corollary, for any prime
power q, we show that distance regular bilinear forms graphs can be obtained as
coset graphs from several completely regular codes with different parameters.

1 Introduction

Let Fq be a finite field of the order q and F∗q = Fq \ {0}. A q-ary linear code
C of length n is a k-dimensional subspace of Fn

q . Given any vector v ∈ Fn
q , its

distance to the code C is d(v, C) = minx∈C{d(v, x)}, the minimum distance of
the code is d = minv∈C{d(v, C\{v})} and the covering radius of the code C is
ρ = maxv∈Fn

q
{d(v, C)}. We say that C is a [n, k, d; ρ]q-code. Let D = C + x

be a coset of C, where + means the component-wise addition in Fq. The weight
wt(D) of D is the minimum weight of the codewords of D.

For a given q-ary code C with covering radius ρ = ρ(C) define

C(i) = {x ∈ Fn
q : d(x, C) = i}, i = 1, 2, ..., ρ.

Say that two vectors x and y are neighbours if d(x, y) = 1.

Definition 1.1. [6] A q-ary code C is completely regular, if for all l ≥ 0 every
vector x ∈ C(l) has the same number cl of neighbours in C(l − 1) and the
same number bl of neighbours in C(l + 1). Define al = (q − 1)n − bl − cl and
c0 = bρ = 0. Denote by (b0, . . . , bρ−1; c1, . . . , cρ) the intersection array of C.

Let M be a monomial matrix, i.e. a matrix with exactly one nonzero entry
in each row and column. If q is prime, then Aut(C) consist of all monomial
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(n×n)-matrices M over Fq such that cM ∈ C for all c ∈ C. If q is a power of a
prime number, then Aut(C) also contains any field automorphism of Fq which
preserves C. The group Aut(C) acts on the set of cosets of C in the following
way: for all σ ∈ Aut(C) and for every vector v ∈ Fn

q we have (v+C)σ = vσ +C.

Definition 1.2. [4, 10] Let C be a linear code over Fq with covering radius ρ.
Then C is completely transitive if Aut(C) has ρ + 1 orbits when acts on the
cosets of C.

Since two cosets in the same orbit should have the same weight distribution,
it is clear, that any completely transitive code is completely regular.

Completely regular and completely transitive codes are classical subjects in
algebraic coding theory, which are closely connected with graph theory, com-
binatorial designs and algebraic combinatorics. Existence, construction and
enumeration of all such codes are open hard problems (see [1, 3, 5, 6] and
references there).

In a recent paper [8] we described an explicit construction, based on the
Kronecker product of parity check matrices, which provides, for any natural
number ρ and for any prime power q, an infinite family of q-ary linear completely
regular codes with covering radius ρ. In [9] we presented another class of q-
ary linear completely regular codes with the same property, based on lifting
of perfect codes. Here, we extend the Kronecker product construction to the
case when component codes have different alphabets and connect the resulting
completely regular codes with codes obtained by lifting q-ary perfect codes.
This gives several different infinite classes of completely regular codes with
different parameters and with identical intersection arrays.

Definition 1.3. For two matrices A = [ar,s] and B = [bi,j ] over Fq define a
new matrix H which is the Kronecker product H = A⊗B, where H is obtained
by changing any element ar,s in A by the matrix ar,sB.

Consider the matrix H = A⊗B and let C, CA and CB be the codes over Fq

which have, respectively, H, A and B as parity check matrices. Assume that
A and B have size ma × na and mb × nb, respectively. For r ∈ {1, . . . , ma} and
s ∈ {1, . . . , mb} the rows in H look as

(ar,1bs,1, . . . , ar,1bs,nb
, ar,2bs,1, . . . , ar,2bs,nb

, . . . , ar,nabs,1, . . . , ar,nabs,nb
).

Definition 1.4. Let C be the [n, k, d]q code with parity check matrix H where
1 ≤ k ≤ n − 1 and d ≥ 3. Denote by Cr the [n, k, d]qr code over Fqr with the
same parity check matrix H. Say that code Cr is obtained by lifting C to Fqr .

2 Extending the Kronecker product construction

Recall that by C(H) we denote the code defined by the parity check matrix H,
by Hq

m we denote the parity check matrix of the q-ary Hamming [n, n−m, 3]q
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code C = C(Hq
m) of length n = (qm − 1)/(q − 1), and by Cr(H

q
m) we denote

the code (of the same length n = (qm − 1)/(q − 1)) obtained by lifting C(Hq
m)

to the field Fqr .
Considering the Kronecker construction obtained in [8] we could see that

the alphabets of both matrices A = [ai,j ] and B should be compatible to each
other in the sense that the multiplication ai,jB can be carried out. To have this
compatibility it is enough that, say, the matrix A is over Fqu and B is over Fq.
First, we consider the covering radius of the resulting codes.

Lemma 2.1. Let C(Hqu

ma) and C(Hq
mb) be two Hamming codes with parameters

[na, na−ma, 3]qu and [nb, nb−mb, 3]q, respectively, where na = (qu ma−1)/(qu−
1), nb = (qmb − 1)/(q− 1), q is a prime power, ma,mb ≥ 2, and u ≥ 1. Then
the code C with parity check matrix H = Hqu

ma ⊗Hq
mb, the Kronecker product of

Hqu

ma and Hq
mb, has covering radius ρ = min{u ma, mb}.

The following statement generalizes the results of [8, 9].

Theorem 2.2. Let C(Hqu

ma) and C(Hq
mb) be two Hamming codes with param-

eters [na, na −ma, 3]qu and [nb, nb −mb, 3]q, respectively, where na = (qu ma −
1)/(qu − 1), nb = (qmb − 1)/(q − 1), q is a prime power, ma,mb ≥ 2, and
u ≥ 1. Then
(i) The code C with parity check matrix H = Hqu

ma ⊗Hq
mb, the Kronecker prod-

uct of Hqu

ma and Hq
mb, is a completely transitive, and so completely regular,

[n, k, d; ρ]qu code with parameters

n = na nb, k = n−ma mb, d = 3, ρ = min{uma, mb. (1)

(ii) The code C has the intersection numbers:

b` =
(qu ma − q`)(qmb − q`)

(q − 1)
, ` = 0, 1, . . . , ρ− 1,

and

c` = q`−1 q` − 1
q − 1

, ` = 1, 2, . . . , ρ.

(iii) The lifted code Cmb
(Hq

uma) is a completely regular code with the same
intersection array as C.

Remark 2.3. We have to remark here that in the statement (iii) we can not
choose the code Cmb

(Hqu

ma) (instead of Cmb
(Hq

uma)), which seems to be nat-
ural. We emphasize that the codes Cmb

(Hq
uma) and Cmb

(Hqu

ma) are not only
different completely regular codes, but they induce different distance-regular
graphs with different intersection arrays. So, the code Cmb

(Hq
uma) suits to

the codes from (i) in the sense that it has the same intersection array. For
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example, the code C2(H22

3 ) induces a distance-regular graph with intersection
array (315, 240; 1, 20) and the code C2(H2

6 ) gives a distance-regular graph with
intersection array (189, 124; 1, 6).

Remark 2.4. Theorem 2.2 above can not be extended to the more general case
when the alphabets Fqa and Fqb of component codes CA and CB, respectively,
neither Fqa is a subfield of Fqb or vice versa Fqb is a subfield of Fqa . We illustrate
it by considering the smallest nontrivial example. Take two Hamming codes,
the [5, 3, 3] code CA over F22 with parity check matrix H22

2 , and the [9, 7, 3] code
CB over F23 with parity check matrix H23

2 . Then the resulting [45, 41, 3] code
C = C(H22

2 ⊗ H23

2 ) over F26 is not even uniformly packed in the wide sense,
since it has the covering radius ρ = 3 and the outer distance s = 7, which can
be checked by considering the parity check matrix of C.

3 CR-codes with the same intersection array

In [9, Theo. 2.11] it is proved that lifting a q-ary Hamming code C(Hq
m) to

Fs
q we obtain a completely regular code Cs(H

q
m) which is not necessarily iso-

morphic to the code Cm(Hq
s ). However, both codes Cs(H

q
m) and Cm(Hq

s ) have
the same intersection array. As we saw above, the code obtained by the Kro-
necker product construction, or our extension for the case when the component
codes have different alphabets, can have the same intersection array. The next
statement is one of the main results of our paper.

Theorem 3.1. Let q be any prime number and let a, b, u be any natural num-
bers. Then:
(i) There exist the following completely regular codes with different parameters
[n, k, d; ρ]qr , where d = 3 and ρ = min{ua, b}:
Cua(H

q
b ) over Fua

q with n = qb−1
q−1 , k = n− b;

Cb(H
q
ua) over Fb

q with n = qua−1
q−1 , k = n− ua;

C(Hq
b ⊗Hq

ua) over Fq with n = qua−1
q−1 × qb−1

q−1 , k = n− bua;

C(Hq
b ⊗Hqa

u ) over Fa
q with n = qb−1

q−1 × qua−1
qu−1 , k = n− bu;

C(Hq
b ⊗Hqu

a ) over Fu
q with n = qb−1

q−1 × qua−1
qu−1 , k = n− ba;

(ii) All the above codes have the same intersection numbers

b` =
(qb − q`)(qua − q`)

(q − 1)
, ` = 0, . . . , ρ− 1, c` = q`−1 q` − 1

q − 1
, ` = 1, . . . , ρ.
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(iii) All codes above coming from Kronecker constructions are completely tran-
sitive.

It is easy to see that the number of different completely transitive (and,
therefore, completely regular) codes with different parameters and the same
intersection array is growing.

4 Coset distance-regular graphs

Let C be a linear completely regular code with covering radius ρ and intersection
array (b0, . . . , bρ−1; c1, . . . cρ). Let {B} be the set of cosets of C. Define the
graph ΓC , which is called the coset graph of C, taking all different cosets B =
C + x as vertices, with two vertices γ = γ(B) and γ′ = γ(B′) adjacent if and
only if the cosets B and B′ contain neighbour vectors, i.e., there are v ∈ B and
v′ ∈ B′ such that d(v,v′) = 1.

Lemma 4.1. [1, 7] Let C be a linear completely regular code with covering
radius ρ and intersection array (b0, . . . , bρ−1; c1, . . . cρ) and let ΓC be the coset
graph of C. Then ΓC is distance-regular of diameter D = ρ with the same
intersection array. If C is completely transitive, then ΓC is distance-transitive.

From all different completely transitive codes described above in Theorem
3.1, we obtain distance-transitive graphs with classical parameters (see [1]).
These graphs have quab vertices, diameter D = min{ua, b}, and intersection
array given by

bl =
(qua − ql)(qb − ql)

(q − 1)
, ` = 0, . . . , ρ− 1, cl = ql−1 ql − 1

q − 1
, ` = 1, . . . , ρ .

Notice that bilinear forms graphs [1, Sec. 9.5] have the same parameters
and are distance-transitive too. These graphs are uniquely defined by their pa-
rameters (see [1, Sec. 9.5]). Therefore, all graphs coming from the completely
regular and completely transitive codes described in Theorem 3.1 are bilinear
forms graphs. We did not find in the literature (in particular in [2], where the
association schemes, formed by bilinear forms, have been introduced, the de-
scription of these graphs, as many different coset graphs of different completely
regular codes. It is also known that these graphs are not antipodal and do not
have antipodal covers (see [1, Sec. 9.5]). This can also be easily seen from the
proof of Lemma 2.1. Indeed, a given vector x ∈ C(ρ) has many neighbors in
C(ρ).

Theorem 4.2. Let C1, C2, . . ., Ck be a family of linear completely transitive
codes constructed by Theorem 2.2 and let ΓC1 , ΓC2 , . . . ,ΓCk

be their correspond-
ing coset graphs. Then:
(i) Any graph ΓCi is a distance-transitive graph, induced by bilinear forms.
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(ii) If any two codes Ci and Cj have the same intersection array, then the
graphs ΓCi and ΓCj are isomorphic.
(iii) If the graph ΓCi has qm vertices, where m is not a prime, then it can be
presented as a coset graph by several different ways, depending on the number
of factors of m.
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