
Fifteenth International Workshop on Algebraic and Combinatorial Coding Theory
June 18-24, 2016, Albena, Bulgaria pp. 255–260

Decoding Interleaved Gabidulin Codes using
Alekhnovich’s Algorithm1

Sven Puchinger sven.puchinger@uni-ulm.de
Institute of Communications Engineering, University of Ulm, Germany
Sven Müelich sven.mueelich@uni-ulm.de
Institute of Communications Engineering, University of Ulm, Germany
David Mödinger david.moedinger@uni-ulm.de
Institute of Distributed Systems, University of Ulm, Germany
Johan S. R. Nielsen jsrn@jsrn.dk
Dpt. of App. Mat. & Computer Science, Technical University of Denmark, Denmark
Martin Bossert martin.bossert@uni-ulm.de
Institute of Communications Engineering, University of Ulm, Germany

Abstract. We prove that Alekhnovich’s algorithm can be used for row reduction of
skew polynomial matrices. This yields an O(`3n(ω+1)/2 log(n)) decoding algorithm
for `-Interleaved Gabidulin codes of length n, where ω is the matrix multiplication
exponent, improving in the exponent of n compared to previous results.

1 Introduction

It is shown in [1, 2] that Interleaved Gabidulin codes of length n ∈ N and
interleaving degree ` ∈ N can be error- and erasure-decoded by transforming
the following skew polynomial [3] matrix into weak Popov form (cf. Section 2)2:

B =




xγ0 s1x
γ1 s2x

γ2 . . . s`x
γ`

0 g1x
γ1 0 . . . 0

0 0 g2x
γ2 . . . 0

...
...

...
. . .

...
0 0 0 . . . g`x

γ`


 , (1)

where the skew polynomials s1, . . . , s`, g1, . . . , g` and the non-negative integers
γ0, . . . , γ` arise from the decoding problem and are known at the receiver. Due
to lack of space, we cannot give a comprehensive description of Interleaved
Gabidulin codes, the mentioned procedure and the resulting decoding radius
here and therefore refer to [2, Section 3.1.3]. By adapting row reduction3 al-
gorithms known for polynomial rings F[x] to skew polynomial rings, decoding

1This work was supported by Deutsche Forschungsgemeinschaft under grant BO 867/29-3.
2Afterwards, the corresponding information words are obtained by ` many divisions of skew

polynomials of degree O(n), which can be done in O(`n(ω+1)/2 log(n)) time [4].
3By row reduction we mean to transform a matrix into weak Popov form by row operations.

256 ACCT2016

complexities of O(`2n2) and O(`n2) can be achieved [2], the latter being as fast
as the algorithm in [5]. In this paper, we adapt Alekhnovich’s algorithm [7] for
row reduction of F[x] matrices to the skew polynomial case.

2 Preliminaries

Let F be a finite field and σ an F-automorphism. A skew polynomial ring
F[x, σ] [3] contains polynomials of the form a =

∑deg a
i=0 aix

i, where ai ∈ F and
adeg a 6= 0 (deg a is the degree of a), which are multiplied according to the rule
x · a = σ(a) · x, extended recursively to arbitrary degrees. This ring is non-
commutative in general. All polynomials in this paper are skew polynomials.

It was shown in [6] for linearized polynomials and generalized in [4] to arbi-
trary skew polynomials that multiplication of two such polynomials of degrees
≤ s can be multiplied with complexity M(s) ∈ O(s(ω+1)/2) in operations over
F, where ω is the matrix multiplication exponent.

We say that a polynomial a has length len a if ai = 0 for all i = 0, . . . ,deg a−
len a and adeg a−len a+1 6= 0. Thus, it can be written as a = ãxdeg a−len a+1, where
deg ã ≤ len a and the multiplication of two polynomials a, b of length ≤ s can
be accomplished as a · b = [ã · σdeg a−len a+1(b̃)]xdeg a+deg a−len a−len b+1. It is a
reasonable assumption in a that computing σi(α) with α ∈ F, i ∈ N is in O(1)
(cf. [4]). Hence, a and b can be multiplied inM(s) time, although their degrees
might be À s.

Vectors v and matrices M are denoted by bold and small/capital letters.
Indices start at 1, e.g. v = (v1, . . . , vr) for r ∈ N. Ei,j is the matrix containing
only one non-zero entry = 1 at position (i, j) and I is the identity matrix. We
denote the ith row of a matrix M by mi. The degree of a vector v ∈ F[x, σ]r
is the maximum of the degrees of its components deg v = maxi{deg vi} and the
degree of a matrix M is the sum of its rows’ degrees deg M =

∑
i deg mi.

The leading position (LP) of v is the rightmost position of maximal degree
LP(v) = max{i : deg vi = deg v}. We say that the leading coefficient (LC) of a
polynomial a is LT(a) = adeg ax

deg a and the leading term (LT) of a vector v is
LT(v) = vLP(v). A matrix M ∈ F[x, σ]r×r is in weak Popov form (wPf) if the
leading positions of its rows are pairwise distinct. E.g., the following matrix is
in weak Popov form since LP(m1) = 2 and LP(m2) = 1

M =
[
x2 + x x2 + 1

x4 x3 + x2 + x + 1

]
.

Similar to [7], we define an accuracy approximation to depth t ∈ N0 of skew
polynomials as a|t =

∑deg a
i=deg a−t+1 aix

i. For vectors, it is defined as v|t =
(v1|min{0,t−(deg v−deg v1)}, . . . , vr|min{0,t−(deg v−deg vr)}) and for matrices row-wise,
where the degrees of the rows are allowed to be different. E.g., with M as above,

M|2 =
[
x2 + x x2

x4 x3

]
and M|1 =

[
x2 x2

x4 0

]
.

Puchinger, Müelich, Mödinger, Nielsen, Bossert 257

We can extend the definition of the length of a polynomial to vectors v as
lenv = maxi{deg v−deg vi +len vi} and to matrices as lenM = maxi{lenmi}.
With this notation, we have len(a|t) ≤ t, len(v|t) ≤ t and len(M|t) ≤ t.

3 Alekhnovich’s Algorithm over Skew Polynomials

Alekhnovich’s algorithm [7] was proposed for transforming matrices over ordi-
nary polynomials F[x] into weak Popov form. In this section, we show that,
with a few modifications, it also works with skew polynomial matrices. As in
the original paper, we prove the correctness of Algorithm 2 (main algorithm)
using the auxiliary Algorithm 1.

Algorithm 1: R(M)
Input: Module basis M ∈ F[x, σ]r×r with deg M = n
Output: U ∈ F[x, σ]r×r: U ·M is in wPf or deg(U ·M) ≤ deg M− 1
U ← I1

while deg M = n and M is not in weak Popov form do2

Find i, j such that LP(mi) = LP(mj) and deg mi ≥ deg mj3

δ ← deg mi − deg mj and α ← LC(LT(mi))/θδ(LC(LT(mj)))4

U ← (I− αxδEi,j) ·U and M ← (I− αxδEi,j) ·M5

return U6

Theorem 1 Algorithm 1 is correct and if len(M) ≤ 1, it has complexity O
(
r3

)
.

Proof Inside the while loop, the algorithm performs a so-called simple transfor-
mation. It is shown in [2] that such a simple transformation on an F[x, σ]-matrix
M preserves both its rank and row space (note that this does not trivially fol-
low from the F[x] case due to non-commutativity) and reduces either LP(mi)
or deg mi. At some point, M is in weak Popov form (iff no simple transfor-
mation is possible anymore), or deg mi and likewise deg M is reduced by one.
The matrix U keeps track of the simple transformations, i.e. multiplying M by
(I− αxδEi,j) from the left is the same as applying a simple transformation on
M. At termination, M = U ·M′, where M′ is the input matrix of the algo-
rithm. Since

∑
i LP(mi) can be decreased at most r2 times without changing

deg M, the algorithm performs at most r2 simple transformations. Multiplying
(I − αxδEi,j) by a matrix V consists of scaling a row with αxδ and adding it
to another (target) row. Due to the accuracy approximation, all monomials of
the non-zero polynomials in the scaled and the target row have the same power,
implying a cost of r for each simple transformation. The claim follows.

We can decrease a matrix’ degree by at least t or transform it into weak
Popov form by t recursive calls of Algorithm 1. We can write this operation as

258 ACCT2016

R(M, t) = U ·R(U ·M), where U = R(M, t−1) for t > 1 and U = I if t = 1. As
in [7], we speed this method up by two modifications. The first one is a divide-
&-conquer trick, where instead of reducing the degree of a “(t − 1)-reduced”
matrix U ·M by 1 as above, we reduce a “t′-reduced” matrix by another t− t′
for an arbitrary t′. For t′ ≈ t/2, the recursion tree has a balanced workload.

Lemma 1 Let t′ < t and U = R(M, t′). Then,

R(M, t) = R
[
U ·M, t− (deg M− deg(U ·M))

] ·U.

Proof U is a matrix that reduces deg M by at least t′ or transforms M into
wPf. Multiplication by R[U ·M, t− (deg M− deg(U ·M))] further reduces the
degree of this matrix by t− (deg M−deg(U ·M)) ≥ t− t′ (or U ·M in wPf).

The second lemma allows to compute only on the top coefficients of the input
matrix inside the divide-&-conquer tree, thus reducing the overall complexity.

Lemma 2 R(M, t) = R(M|t, t)

Proof Elementary row operations as in Algorithm 1 behave exactly as their
F[x] equivalent, cf. [2]. Hence, the arguments of [7, Lemma 2.7] hold.

Lemma 3 R(M, t) contains polynomials of length ≤ t.

Proof The proof works as in the F[x] case, cf. [7, Lemma 2.8], by taking care
of the fact that αxa · βxb = ασc(β)xa+b for all α, β ∈ F, a, b ∈ N0.

Algorithm 2: R̂(M, t)
Input: Module basis M ∈ F[x, σ]r×r with deg M = n
Output: U ∈ F[x, σ]r×r: U ·M is in wPf or deg(U ·M) ≤ deg M− t
M ← M|t1

if t = 1 then2

return R(M)3

U1 ← R̂(M, bt/2c)4

M1 ← U1 ·M5

return R̂(M1, t− (deg M− deg M1)) ·U16

Theorem 2 Algorithm 2 is correct and has complexity O(r3M(t)).

Puchinger, Müelich, Mödinger, Nielsen, Bossert 259

Proof Correctness follows from R(M, t) = R̂(M, t), which can be proven by in-
duction (for t = 1, see Theorem 1). Let Û = R̂(M|t, b t

2c) and U = R(M|t, b t
2c).

R̂(M, t) = R̂(Û ·M|t, t− (deg M|t − deg(Û ·M|t))) · Û
(i)
= R(U ·M|t, t− (deg M|t − deg(U ·M|t))) ·U (ii)

= R(M|t, t) (iii)
= R(M, t),

where (i) follows from the induction hypothesis, (ii) by Lemma 1, and (iii) by
Lemma 2. Algorithm 2 calls itself twice on inputs of sizes ≈ t

2 . The only other
costly operations are the matrix multiplications in Lines 5 and 6 of matrices con-
taining only polynomials of length ≤ t (cf. Lemma 3). In order to control the
size of the polynomial operations within the matrix multiplication, sophisticated
matrix multiplication algorithms are not suitable in this case. E.g., in divide-&-
conquer methods like Strassen’s algorithm the length of polynomials in interme-
diate computations might be much larger than t. Using the definition of matrix
multiplication, we will have r2 times r multiplicationsM(t) and r2 times r addi-
tions O(t) of polynomials of length ≤ t, having complexity O(r3M(t)). The re-
cursive complexity relation reads f(t) = 2 ·f(t

2)+O(r3M(t)). The base case op-
eration R(M|1) with cost f(1) is called at most t times since it decreases deg M
by 1 each time. With the master theorem, we obtain f(t) ∈ O(tf(1)+ r3M(t)).
R(M|1) calls Algorithm 1 on input matrices of length 1, implying f(1) ∈ O

(
r3

)

(cf. Theorem 1). Hence, f(t) ∈ O(r3M(t)).

4 Implications and Conclusion

The orthogonality defect [2] of a square, full-rank, skew polynomial matrix M is
∆(M) = deg M − deg detM, where det is any Dieudonné determinant; see [2]
why ∆(M) does not depend on the choice of det. It can be shown that deg detM
is invariant under row operations and a matrix M in weak Popov form has
∆(M) = 0. Thus, if V is in wPf and obtained from M by simple transforma-
tions, then deg V = ∆(V) + deg detV = 0 + deg detM = deg M −∆(M). In
combination with ∆(M) ≥ 0, this implies that R̂(M, ∆(M)) ·M is always in
weak Popov form. It was shown in [2] that B from Equation (1) has orthogo-
nality defect ∆(B) ∈ O(n), which implies the following theorem.

Theorem 3 (Main Statement) R̂(B, ∆(B)) ·B is in weak Popov form. This
implies that we can decode Interleaved Gabidulin codes in4 O(`3n(ω+1)/2 log(n)).

Table 1 compares the complexities of known decoding algorithms for Interleaved
Gabidulin codes. Which algorithm is asymptotically fastest depends on the rela-
tive size of ` and n. Usually, one considers n À `, in which case the algorithm of

4The log(n) factor is due to the divisions in the decoding algorithm, following the row
reduction step (see Footnote 2 on the first page) and can be omitted if log(n) ∈ o(`2).

260 ACCT2016

this paper provides—to the best of our knowledge—the fastest known algorithm
for decoding Interleaved Gabidulin codes.

Algorithm Complexity

Generalized Berlekamp–Massey [5] O(`n2)

Mulders–Storjohann∗ [2] O(`2n2)

Demand–Driven∗ [2] O(`n2)

Alekhnovich∗ (Theorem 2) O(`3n
ω+1

2 log(n))

⊆
{

O(`3n1.91 log(n)), ω ≈ 2.81,

O(`3n1.69 log(n)), ω ≈ 2.37.

Table 1: Comparison of decoding algorithms for Interleaved Gabidulin codes.
Algorithms marked with ∗ are based on the row reduction problem of [2].

Note that in the case of non-interleaved Gabidulin codes (` = 1), we obtain
an alternative to the Linearized Extended Euclidean algorithm from [6] of almost
the same complexity. In fact, the two algorithms are equivalent except for the
implementation of a simple transformation.

References

[1] W. Li, J. S. R. Nielsen, S. Puchinger, and V. Sidorenko, “Solving Shift
Register Problems over Skew Polynomial Rings using Module Minimisation,”
in International Workshop on Coding and Cryptography, Paris, 2015.

[2] S. Puchinger, J. S. R. Nielsen, W. Li, and V. Sidorenko, “Row Reduction
Applied to Rank Metric and Subspace Codes,” Submitted to Designs, Codes
and Cryptography, 2015, arXiv preprint 1510.04728.

[3] O. Ore, “Theory of Non-commutative Polynomials,” Annals of mathematics,
pp. 480–508, 1933.

[4] S. Puchinger and A. Wachter-Zeh, “Fast Operations on Linearized Polyno-
mials and their Applications in Coding Theory,” Submitted to: Journal of
Symbolic Computation, 2016, arXiv preprint 1512.06520.

[5] V. Sidorenko, L. Jiang, and M. Bossert, “Skew-Feedback Shift-Register Syn-
thesis and Decoding Interleaved Gabidulin Codes,” IEEE Trans. Inf. Theory,
vol. 57, no. 2, pp. 621–632, 2011.

[6] A. Wachter-Zeh, “Decoding of Block and Convolutional Codes in Rank Met-
ric,” Ph.D. dissertation, Ulm University and University of Rennes, 2013.

[7] M. Alekhnovich, “Linear Diophantine Equations over Polynomials and Soft
Decoding of Reed–Solomon Codes,” IEEE Trans. Inf. Theory, vol. 51, no. 7,
pp. 2257–2265, 2005.

