Fifteenth International Workshop on Algebraic and Combinatorial Coding Theory
June 18-24, 2016, Albena, Bulgaria pp. 255-260

Decoding Interleaved Gabidulin Codes using
Alekhnovich’s Algorithm!

SVEN PUCHINGER sven.puchingerQuni-ulm.de
Institute of Communications Engineering, University of Ulm, Germany

SVEN MUELICH sven.mueelich@uni-ulm.de
Institute of Communications Engineering, University of Ulm, Germany

DaAviD MODINGER david.moedinger@uni-ulm.de
Institute of Distributed Systems, University of Ulm, Germany

JoHAN S. R. NIELSEN jsrn@jsrn.dk
Dpt. of App. Mat. & Computer Science, Technical University of Denmark, Denmark
MARTIN BOSSERT martin.bossert@uni-ulm.de

Institute of Communications Engineering, University of Ulm, Germany

Abstract. We prove that Alekhnovich’s algorithm can be used for row reduction of
skew polynomial matrices. This yields an O(£3n“+1/21og(n)) decoding algorithm
for £-Interleaved Gabidulin codes of length n, where w is the matrix multiplication
exponent, improving in the exponent of n compared to previous results.

1 Introduction

It is shown in [1, 2| that Interleaved Gabidulin codes of length n € N and
interleaving degree ¢ € N can be error- and erasure-decoded by transforming
the following skew polynomial [3] matrix into weak Popov form (cf. Section 2)2:

0 st sox™? .. spxt
0 giam 07 . 0
2
po |8 e 0 ®
0 0 0 ... g
where the skew polynomials s1,...,84,91,-..,9¢ and the non-negative integers
Y0, - - -y Ye arise from the decoding problem and are known at the receiver. Due

to lack of space, we cannot give a comprehensive description of Interleaved
Gabidulin codes, the mentioned procedure and the resulting decoding radius
here and therefore refer to [2, Section 3.1.3]. By adapting row reduction® al-
gorithms known for polynomial rings Flz| to skew polynomial rings, decoding

!This work was supported by Deutsche Forschungsgemeinschaft under grant BO 867/29-3.

2 Afterwards, the corresponding information words are obtained by ¢ many divisions of skew
polynomials of degree O(n), which can be done in O(£n“*1/2log(n)) time [4].

3By row reduction we mean to transform a matrix into weak Popov form by row operations.

256 ACCT2016

complexities of O(¢*n?) and O(¢n?) can be achieved [2], the latter being as fast
as the algorithm in [5]. In this paper, we adapt Alekhnovich’s algorithm [7] for
row reduction of Flz] matrices to the skew polynomial case.

2 Preliminaries

Let F be a finite field and ¢ an F-automorphism. A skew polynomial ring
F[x,0] [3] contains polynomials of the form a = Y %8% gz, where a; € F and
Adega 7 0 (dega is the degree of a), which are multiplied according to the rule
x-a = o(a) - z, extended recursively to arbitrary degrees. This ring is non-
commutative in general. All polynomials in this paper are skew polynomials.

It was shown in [6] for linearized polynomials and generalized in [4] to arbi-
trary skew polynomials that multiplication of two such polynomials of degrees
< s can be multiplied with complexity M(s) € O(s“+1/2) in operations over
IF, where w is the matrix multiplication exponent.

We say that a polynomial a has length lena if a; =0 foralli =0,...,dega—
len a and ageg a—lena+1 # 0. Thus, it can be written as a = axdesa—lenatl where
dega < lena and the multiplication of two polynomials a, b of length < s can
be accomplished as a - b = [a - gdega—lenatl p)pdegatdega—ienalenbtl T4 g 5
reasonable assumption in a that computing o?(a) with o € F, i € N is in O(1)
(cf. [4]). Hence, a and b can be multiplied in M(s) time, although their degrees
might be > s.

Vectors v and matrices M are denoted by bold and small/capital letters.
Indices start at 1, e.g. v = (v1,...,v,) for € N. E; ; is the matrix containing
only one non-zero entry = 1 at position (¢,7) and I is the identity matrix. We
denote the ith row of a matrix M by m;. The degree of a vector v € F[x,c]"
is the maximum of the degrees of its components deg v = max;{degv;} and the
degree of a matrix M is the sum of its rows’ degrees degM =), deg m,.

The leading position (LP) of v is the rightmost position of maximal degree
LP(v) = max{i : degv; = degv}. We say that the leading coefficient (LC) of a
polynomial @ is LT (a) = adegar9°® and the leading term (LT) of a vector v is
LT(v) = vpp(v)- A matrix M € Flz,o]"™" is in weak Popov form (wPf) if the
leading positions of its rows are pairwise distinct. E.g., the following matrix is
in weak Popov form since LP(m;) = 2 and LP(my) =1

2 2
_|x*F i+ 1
M_[zt 333—1—:U2+:13—|—1]'

Similar to [7], we define an accuracy approximation to depth t € Ny of skew
polynomials as al; = Z?i%:g a—til a;x’. For vectors, it is defined as v =
(V1| min{0,t—(deg v—deg v1)}s - - » Ur|min{0,t— (deg v—deg v,)}) and for matrices row-wise,
where the degrees of the rows are allowed to be different. E.g., with M as above,

2 2 2 2
M|2—[33$1'$ i;;,] anth—[ill x()}

Puchinger, Miielich, Médinger, Nielsen, Bossert 257

We can extend the definition of the length of a polynomial to vectors v as
len v = max;{deg v — deg v; + lenv;} and to matrices as len M = max;{lenm,;}.
With this notation, we have len(al;) < ¢, len(v|¢) <t and len(M|;) < t.

3 Alekhnovich’s Algorithm over Skew Polynomials

Alekhnovich’s algorithm [7] was proposed for transforming matrices over ordi-
nary polynomials F[z] into weak Popov form. In this section, we show that,
with a few modifications, it also works with skew polynomial matrices. As in
the original paper, we prove the correctness of Algorithm 2 (main algorithm)
using the auxiliary Algorithm 1.

Algorithm 1: R(M)
Input: Module basis M € Flz,o]"*" with degM =n
Output: U € F[z,0]"*": U-M is in wPf or deg(U-M) < degM — 1
U«~—1
while deg M = n and M is not in weak Popov form do
Find i, j such that LP(m;) = LP(m;) and degm; > degm,
§ « degm; — degm; and a « LC(LT(m;))/6°(LC(LT(m;)))
U+ (I-a2’E;;) - Uand M « (I— a2’E;;) - M

return U

(S U VU

(=]

Theorem 1 Algorithm 1 is correct and if len(M) < 1, it has complezity O (13).

Proof Inside the while loop, the algorithm performs a so-called simple transfor-
mation. It is shown in [2] that such a simple transformation on an F[z, o]-matrix
M preserves both its rank and row space (note that this does not trivially fol-
low from the F[z] case due to non-commutativity) and reduces either LP(m;)
or degm;. At some point, M is in weak Popov form (iff no simple transfor-
mation is possible anymore), or degm; and likewise deg M is reduced by one.
The matrix U keeps track of the simple transformations, i.e. multiplying M by
(I— am‘sEi,j) from the left is the same as applying a simple transformation on
M. At termination, M = U - M/, where M’ is the input matrix of the algo-
rithm. Since Y, LP(m;) can be decreased at most r? times without changing
deg M, the algorithm performs at most 2 simple transformations. Multiplying
(I — az’E; ;) by a matrix V consists of scaling a row with az’ and adding it
to another (target) row. Due to the accuracy approximation, all monomials of
the non-zero polynomials in the scaled and the target row have the same power,
implying a cost of r for each simple transformation. The claim follows. |

We can decrease a matrix’ degree by at least ¢ or transform it into weak
Popov form by t recursive calls of Algorithm 1. We can write this operation as

258 ACCT2016

R(M,t) = U-R(U-M), where U = R(M,t—1) fort >1and U =Tift = 1. As
in [7], we speed this method up by two modifications. The first one is a divide-
&-conquer trick, where instead of reducing the degree of a “(t — 1)-reduced”
matrix U - M by 1 as above, we reduce a “t’-reduced” matrix by another ¢ — ¢/
for an arbitrary ¢'. For ¢’ & ¢/2, the recursion tree has a balanced workload.

Lemma 1 Lett' <t and U =R(M,t'). Then,

R(M,) = R[U M, t — (degM — deg(U - M))] - U.

Proof U is a matrix that reduces deg M by at least ¢’ or transforms M into
wPf. Multiplication by R[U - M, ¢t — (degM — deg(U - M))] further reduces the
degree of this matrix by ¢t — (deg M — deg(U-M)) >t —t' (or U-M in wPf). B

The second lemma allows to compute only on the top coefficients of the input
matrix inside the divide-&-conquer tree, thus reducing the overall complexity.

Lemma 2 R(M,t) = R(M|,t)

Proof Elementary row operations as in Algorithm 1 behave exactly as their
F[z] equivalent, cf. [2]. Hence, the arguments of |7, Lemma 2.7] hold. n

Lemma 3 R(M,t) contains polynomials of length < t.

Proof The proof works as in the F[x] case, cf. |7, Lemma 2.8], by taking care
of the fact that axz?® - Bz = ac®(8)x*? for all a, B € F, a,b € N. |

Algorithm 2: R(M, t)

Input: Module basis M € Flz,o]"*" with degM =n

Output: U € Flz,0]"*": U-M is in wPf or deg(U-M) < degM — ¢
M «— M|t

if t =1 then

3 L return R(M)

Uy — R(M, [t/2])
5 M; —U;-M
6 return R(M,t — (degM — degM;)) - Uy

N =

I

Theorem 2 Algorithm 2 is correct and has complexity O(r3M(t)).

Puchinger, Miielich, Médinger, Nielsen, Bossert 259
Proof Correctness follows from R(M, t) = R(M, t), which can be proven by in-
duction (for t = 1, see Theorem 1). Let U = R(M]|4, L%j) and U = R(M[, | £]).

R(M, t) = R(U - MJ;,t — (deg M|, — deg(U - M[,))) - U
)

o

R(U - My, t — (deg M, — deg(U - MJ,))) - U &

(iii)

R(M], t) '= R(M, t),

where (i) follows from the induction hypothesis, (ii) by Lemma 1, and (iii) by
Lemma 2. Algorithm 2 calls itself twice on inputs of sizes = % The only other
costly operations are the matrix multiplications in Lines 5 and 6 of matrices con-
taining only polynomials of length < ¢ (cf. Lemma 3). In order to control the
size of the polynomial operations within the matrix multiplication, sophisticated
matrix multiplication algorithms are not suitable in this case. E.g., in divide-&-
conquer methods like Strassen’s algorithm the length of polynomials in interme-
diate computations might be much larger than ¢. Using the definition of matrix
multiplication, we will have 72 times r multiplications M (t) and 72 times r addi-
tions O(t) of polynomials of length < ¢, having complexity O(r3M(t)). The re-
cursive complexity relation reads f(t) = 2- f(£)+O(r>M(t)). The base case op-
eration R(M|;) with cost f(1) is called at most ¢ times since it decreases deg M
by 1 each time. With the master theorem, we obtain f(t) € O(tf(1) +73M(t)).
R(M];) calls Algorithm 1 on input matrices of length 1, implying f(1) € O (r®)
(cf. Theorem 1). Hence, f(t) € O(r3M(t)). |

4 Implications and Conclusion

The orthogonality defect |2] of a square, full-rank, skew polynomial matrix M is
A(M) = degM — degdet M, where det is any Dieudonné determinant; see |2]
why A(M) does not depend on the choice of det. It can be shown that deg det M
is invariant under row operations and a matrix M in weak Popov form has
A(M) = 0. Thus, if V is in wPf and obtained from M by simple transforma-
tions, then degV = A(V) +degdetV = 0 + degdet M = degM — A(M). In
combination with A(M) > 0, this implies that R(M, A(M)) - M is always in
weak Popov form. It was shown in [2] that B from Equation (1) has orthogo-
nality defect A(B) € O(n), which implies the following theorem.

Theorem 3 (Main Statement) R(B,A(B))-B is in weak Popov form. This
implies that we can decode Interleaved Gabidulin codes in* O(£3n“+D/21og(n)).

Table 1 compares the complexities of known decoding algorithms for Interleaved
Gabidulin codes. Which algorithm is asymptotically fastest depends on the rela-
tive size of £ and n. Usually, one considers n > ¢, in which case the algorithm of

“The log(n) factor is due to the divisions in the decoding algorithm, following the row
reduction step (see Footnote 2 on the first page) and can be omitted if log(n) € o(£?).

260 ACCT2016

this paper provides—to the best of our knowledge—the fastest known algorithm
for decoding Interleaved Gabidulin codes.

Algorithm Complexity
Generalized Berlekamp-Massey [5] | O(¢n?)
Mulders—-Storjohann* |2] O(?n?)
Demand-Driven* [2] O(¢n?)
Alekhnovich* (Theorem 2) O(€3anH log(n))

- O(3n*1log(n)), w =~ 2.81,
— o3P log(n)), w =~ 2.37.

Table 1: Comparison of decoding algorithms for Interleaved Gabidulin codes.
Algorithms marked with * are based on the row reduction problem of [2].

Note that in the case of non-interleaved Gabidulin codes (¢ = 1), we obtain
an alternative to the Linearized Extended Euclidean algorithm from [6] of almost
the same complexity. In fact, the two algorithms are equivalent except for the
implementation of a simple transformation.

References

[1] W. Li, J. S. R. Nielsen, S. Puchinger, and V. Sidorenko, “Solving Shift
Register Problems over Skew Polynomial Rings using Module Minimisation,”
in International Workshop on Coding and Cryptography, Paris, 2015.

[2] S. Puchinger, J. S. R. Nielsen, W. Li, and V. Sidorenko, “Row Reduction
Applied to Rank Metric and Subspace Codes,” Submitted to Designs, Codes
and Cryptography, 2015, arXiv preprint 1510.04728.

[3] O. Ore, “Theory of Non-commutative Polynomials,” Annals of mathematics,
pp. 480-508, 1933.

[4] S. Puchinger and A. Wachter-Zeh, “Fast Operations on Linearized Polyno-
mials and their Applications in Coding Theory,” Submitted to: Journal of
Symbolic Computation, 2016, arXiv preprint 1512.06520.

[5] V. Sidorenko, L. Jiang, and M. Bossert, “Skew-Feedback Shift-Register Syn-
thesis and Decoding Interleaved Gabidulin Codes,” IEEFE Trans. Inf. Theory,
vol. 57, no. 2, pp. 621-632, 2011.

[6] A. Wachter-Zeh, “Decoding of Block and Convolutional Codes in Rank Met-
ric,” Ph.D. dissertation, Ulm University and University of Rennes, 2013.

[7] M. Alekhnovich, “Linear Diophantine Equations over Polynomials and Soft
Decoding of Reed—Solomon Codes,” IEEE Trans. Inf. Theory, vol. 51, no. 7,
pp. 2257-2265, 2005.

