
Fifteenth International Workshop on Algebraic and Combinatorial Coding Theory
June 18-24, 2016, Albena, Bulgaria pp. 244–249

A Dynamic Data Structure for Segment In-
tersection Queries: Extended Abstract 1

Kalina Petrova kalina.h.petrova@gmail.com
Princeton University

Robert Tarjan prof.tarjan@gmail.com
Department of Computer Science, Princeton University, and Intertrust Technologies

Abstract. This paper deals with the problem of supporting a set of axis-aligned
segments in the plane so that new segments can be inserted and for any given
axis-aligned query rectangle Q, all intersection points of pairs of segments inside
Q can be reported. This problem is motivated by scenarios of motion planning
in which a number of moving entities on predetermined trajectories are given
and collisions are to be prevented. If N is the number of segments and K is
the number of points reported in a query, there is an algorithm that supports
queries in O(

√
N log N +K log3 N) time and insertions in O(

√
N log3 N) time using

O(N log2 N) space and O(N
√

N log3 N) preprocessing time. It is hoped that this
solution will provide insight in the general problem of dynamization of range query
algorithms and pairwise intersection query algorithms.

1 Introduction

Range searching is one of the most studied areas of computational geometry.
In this paper we are going to consider a range searching problem in which we
are interested in the intersection points between pairs of segments in the plane.
The formal definition of the problem is as follows.

The Segment Intersection Problem. Given a set O of N axis-aligned
segments in the plane with O = V ∪H where V is the set of vertical segments
and H is the set of horizontal segments, support the following operations:

• Query: given an axis-aligned rectangle Q, report all K points p = Hi ∩
Vj ∩Q, where Hi ∈ H,Vj ∈ V .

• Insertion: add a new axis-aligned segment o to O.

The paper Finding Pairwise Intersections Inside a Query Range [1] solves
the static version of the problem (it supports queries but not insertions). The
reason why the dynamic version is significantly harder than the static one is that
there can be as many as N new intersection points as a result of an insertion.
This makes it hard to achieve a sublinear time complexity both for the insertion
and for the query operation.

1This research is supported by Princeton University.



Petrova, Tarjan 245

The study of pairwise intersection points of geometrical objects is motivated
by motion planning. If we imagine that the geometrical objects are the trajec-
tories of moving entities, like robots in a factory or airplanes in the sky, we
might want to know all points where two entities may potentially collide so we
can take measures to avoid collisions. Furthermore, it is likely that we want
to ask this question for particular areas only. The trajectories of objects can
generally be arbitrary curves but we restrict ourselves to the case where they
are axis-aligned segments for now.

We provide an algorithm and a set of data structures that allows us to
perform queries in O(

√
N log N + K log3 N) amortized time and insertions in

O(
√

N log3 N) amortized time using O(N log2 N) space and O(N
√

N log3 N)
preprocessing time.

2 Approach

We will follow the skeleton of the solution of the static version of the problem
described in [1]. We make use of the concept of witness points. Each segment
Oi has up to two points on it that are considered the witness points associated
with it (we will also say that Oi is associated with each witness point that is
associated with it). The following points comprise the set of witness points W .

• For every vertical segment Vi ∈ O, the topmost and bottommost intersec-
tion points of Vi with a horizontal segment are witness points associated
with Vi.

• For every horizontal segment Hj ∈ O, the leftmost and rightmost inter-
section points of Hj with a vertical segment are witness points associated
with Hj .

Next, the solution of the static version of the problem in [1] defines the set
O∗(Q) to consist of the following members of O.

• For each witness point Wl inside Q, if Oi ∈ O is the segment associated
with Wl, then Oi ∈ O∗(Q).

• Let V (Q) be all vertical segments in O that cross Q completely from top
to bottom, and let H(Q) be all horizontal segments in O that cross Q
completely from left to right. Then if V (Q) 6= ∅ and H(Q) 6= ∅, we have
V (Q) ⊆ O∗(Q).

Lemma 1 in [1] states that if Vi ∈ V and Hj ∈ H intersect inside Q, then
either Vi ∈ O∗(Q) or Hj ∈ O∗(Q). Note that this lemma applies to the dynamic
case as well as it only depends on the current contents of O.

Our solution follows the skeleton of that in [1], but we use different data
structures. We support a data structure Wpoints that helps us, when given



246 ACCT2016

a query rectangle Q, to find all witness points in Q. We also support data
structures Vcross and Hcross, which can report all the segments crossing a query
rectangle Q completely from top to bottom and from left to right respectively.
Finally, we store all segments in O in a data structure S that can report all
segments intersecting an axis-aligned query segment.

Given a query rectangle Q, we perform the following operations, as described
in [1].

1. Perform a query in Wpoints to find all witness points in Q. For each
reported witness point, insert the corresponding segment in O∗(Q).

2. Perform queries in Vcross and Hcross to decide if the number of segments
crossing Q completely from top to bottom, and the number of segments
crossing Q completely from left to right, are both not zero. If so, report
all segments crossing Q completely from top to bottom, and insert them
in O∗(Q).

3. For each Oi ∈ O∗(Q), perform an intersection query with the range Oi∩Q
in S, to find all objects Oj 6= Oi intersecting Oi inside Q. Note that if Oi

is vertical, we only consider Oj ’s which are horizontal and vice versa.

Provided that Wpoints, Vcross, Hcross, and S are up to date, the proof of
correctness of this procedure coincides with the proof of Lemma 1 in [1].

Now let us consider what data structures we need for Wpoints, Vcross, Hcross,
and S.

We are going to make use of the data structure described in the paper An
Implementation of a Multidimensional Dynamic Range Tree Based on an AVL
Tree [2], which we will call an AVL range tree. An AVL range tree keeps a set
of n points in k-dimensional space and supports the following operations.

• Report: Given a k-dimensional axis-aligned box B, report all points inside
B in time O(logk n + t), where t is the number of points found.

• Add: Add a new point with coordinates (x1, . . . , xk) in time O(logk n).

• Delete: Delete the point with coordinates (x1, . . . , xk) in time O(logk n).

From now on we will represent a vertical segment as (x, y1, y2), where x is
the x coordinate of the segment, and y1 and y2, y1 < y2, are the y coordinates
of the lower and upper end of the segment respectively. Likewise, we represent
horizontal segments using three numbers (x1, x2, y) and we represent rectangles
using four numbers (x1, x2, y1, y2).

First, consider the data structure S. We need to keep all segments Oi ∈ O
in a data structure such that when given a segment Oi ∩ Q, Oi ∈ O∗(Q), we
can report the segments in O that intersect Oi ∩ Q. We are going to keep all
vertical segments in one data structure and all horizontal segments in another.



Petrova, Tarjan 247

We will describe the data structure Sh that keeps all horizontal segments, the
data structure Sv for vertical segments is analogous. We represent a horizontal
segment (x1, x2, y) as a point in 3D space, and we keep all such points cor-
responding to horizontal segments in a three-dimensional AVL range tree Sh.
When we have to report all horizontal segments that intersect a given vertical
segment Oi ∩ Q = (y1, y2, x), this is equivalent to finding all points (x1, x2, y)
such that x1 ∈ (−∞, x], x2 ∈ [x,∞), y ∈ [y1, y2]. Thus we perform a report
operation with the box (−∞, x] × [x,∞) × [y1, y2], and the reported points
correspond to the segments we are looking for. Whenever a new horizontal
segment is added to O, we add it to Sh.

Now consider the data structures Vcross and Hcross. We only describe Vcross,
the case of Hcross being analogous. A vertical segment (x′, y′1, y

′
2) crosses a

query rectangle Q = (x1, x2, y1, y2) completely from top to bottom if and only
if x′ ∈ [x1, x2], y′1 ∈ (−∞, y1] and y′2 ∈ [y2,∞). Thus we store all vertical
segments in a three-dimensional AVL range tree Vcross as points in 3D space.
To find all vertical segments that cross a query rectangle Q = (x1, x2, y1, y2)
completely from top to bottom, we just query Vcross with the box [x1, x2] ×
(−∞, y1]× [y2,∞). When a new vertical segment (x′, y′1, y

′
2) is inserted, we add

the 3D point corresponding to it to Vcross.
The data structure Wpoints is more complicated. In the static case of the

problem a 2-dimensional AVL range tree suffices for it and yields a good per-
formance. However, in the dynamic case the insertion operation may change
as many as N of the witness points, so we have to consider alternatives. We
reduce the problem of maintaining Wpoints to another problem which we call
the Point Projection Problem.

3 Reduction to the Point Projection Problem

In this section we describe how to represent the witness points together with the
segments they are associated with as points in 3D space and how to translate
our current problem into a problem about these points which we call the Point
Projection Problem. Let us divide the witness points in the following four
types: topmost and bottommost intersection points of a vertical segment, and
leftmost and rightmost intersection points of a horizontal segment. To be able
to report all witness points inside a query rectangle Q, we are going to use
four different data structures - one for each type of witness points. We are
going to describe the data structure that handles the witness points which are
topmost intersection points of vertical segments, the other cases are analogous.
We are going to keep each witness point with coordinates (x, y) that is the
topmost intersection point of a vertical segment (x, y1, y2) as a point in 3D
space (x, y2, y). When we want to find all witness points inside a query rectangle
Q = (x′1, x

′
2, y

′
1, y

′
2), we have to report all points (x, y2, y) such that (x, y2, y) ∈

[x′1, x
′
2] × (−∞,∞) × [y′1, y

′
2]. We are going to keep these witness points in a



248 ACCT2016

data structure W topmost
points that is yet to be described.

We are going to support two auxiliary data structures called Maxh and
NoIntersectionv. Maxh will keep all horizontal segments as points in 3D
space. For it we use a 3D AVL range tree that supports query for the element
with largest z coordinate in a given box (this is a slight modification of the
normal query in an AVL range tree that does not change the time complexity).
NoIntersectionv will keep all vertical segments that have no intersection points
with horizontal segments. The vertical segments will be represented as points
in 3D space and will be stored in a 3D AVL range tree.

When we are inserting a new vertical segment (x′′, y′′1 , y′′2) in O, we need to
find its topmost intersection point first. We do this by querying Maxh, which
takes O(log3 N). If the vertical segment we are inserting is intersected by at
least one horizontal segment, we take its topmost intersection point y and add
(x′′, y′′2 , y) to W topmost

points . If it is not, we add (x′′, y′′1 , y′′2) to NoIntersectionv.
When we are inserting a new horizontal segment (x′′1, x

′′
2, y

′′), we have to
increase the y-coordinate to y′′ of all witness points with (x, y2, y) ∈ [x′′1, x

′′
2]×

[y′′,∞) × (−∞, y′′). This will be done using an update operation in W topmost
points

that remains to be described. We also query NoIntersectionv to see if our
horizontal segment intersects any of the vertical segments in it and if so, we
delete these vertical segments from NoIntersectionv and add them to W topmost

points

with the witness point obtained from their intersection with the new horizontal
segment. Finally, we add the new horizontal segment to Maxh.

The requirements for W topmost
points are going to shape our formulation of the

Point Projection Problem, which is as follows. We need W topmost
points to store

points in 3D space and to support the following operations:

1. Insertion: Add a point (x, y, z) to W topmost
points .

2. Query: Report all points in W topmost
points in a given box [x1, x2] × [y1,∞) ×

[z1, z2].

3. Update: For all points (x, y, z) in W topmost
points in the box [x1, x2]×(−∞,∞)×

(−∞, z2], increase z to z2.

4 Results

Theorem 1. There exists an algorithm that solves the Point Projection Prob-
lem with amortized time complexity O(

√
n log(n+m)+k) for query operations,

O(
√

n log2(n) log(n + m)) for update operations, O(
√

n log2(n) log(n + m)) for
insertions, and space complexity O(n log(n) log(n + m)), where n is the total
number of points, m is the total number of update operations, and k is the
number of points reported in a query.



Petrova, Tarjan 249

Theorem 2. There exists an algorithm that solves the Segment Intersection
Problem with amortized time complexity O(

√
N log(N) + K log3(N)) for query

operations, O(
√

N log3(N)) for insertions and space complexity O(N log2(N)),
where N is the number of segments and K is the number of reported points in
a given query.

We omit the proofs for the sake of brevity.

5 Conclusion

To summarize, we had posed ourselves the goal to design an algorithm that
supports the following operations on a set of axis-aligned segments in the plane.

• Query : for a given rectangle Q, report all intersection points p of pairs of
segments with p ∈ Q.

• Insertion: insert a new segment.

We achieved this goal with an amortized time complexity of O(
√

N log N +
K log3 N) for queries and O(

√
N log3 N) for insertions and space complexity

O(N log2 N). Our result is remarkable because it handles both queries and
insertions in sublinear time, which seemed like a hopeless aim at first as each
insertion can potentially add as many as N new intersection points. In the
future, we are planning to consider generalizations to segments with arbitrary
orientations, sequences of segments and axis-aligned rectangles.

6 Acknowledgements

We would like to thank professor Bernand Chazelle for the useful ideas and Ali
D. Mehrabi, coauthor of [1], for explaining the motivation behind their work.
We would also like to thank the Computer Science Department at Princeton
University for supporting this research.

References

[1] Mark de Berg and Joachim Gudmundsson and Ali D. Mehrabi, Finding
Pairwise Intersections Inside a Query Range, Algorithms and Data Struc-
tures - 14th International Symposium, WADS 2015, Victoria, BC, Canada,
August 5-7, 2015. Proceedings, 2015, 236–248.

[2] Michael G. Lamoureux, An Implementation of a Multidimensional Dy-
namic Range Tree Based on an AVL Tree, University of New Brunswick,
Faculty of Computer Science, 1995.


