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Abstract. In this paper a generalization of classic Mollard construction for any
code length is given. It is shown that such generalized codes have the property of
partial robustness. These codes have less undetectable and miscorrected errors than
the traditional linear error-correcting codes, therefore, they are more useful for the
detection of multiple and repeating errors. It is also shown that the generalized
Mollard construction has some advantages in providing better protection against
multiple bit errors over the shortened Vasil’ev code, for some code parameters.

1 Introduction

Classic linear perfect codes, which correct single errors and detect double errors,
are usually used to increase the reliability of systems – in sense of protection
them against soft errors. Such codes are concentrated on a small subset of
the most probable errors (of small multiplicity) – they guarantee the error
detection for the errors, which multiplicity is less then the code distance d, but
the detection of errors which multiplicity is greater than d, is unpredictable
and inefficient. So, in case of multiple or repeating errors occurrence – i.e.
hard errors, caused by permanent faults – the reliability of the memory which
protection is based on classic linear perfect codes, cannot be guaranteed. As
the probability of multiple errors occurrence becomes higher in the presence
of new technologies (for example, a flash-memory effected by space radiation),
some authors (see, for example, [1]) propose to consider so called robust codes,
which guarantee a certain level of error detection.

Recall that a binary perfect (or closely packed) code Cn of length n = 2m−1,
m ≥ 2, with the code distance 3 (which correct only single errors) is a code of
power |Cn| = 2n

n+1 . The linear binary perfect code of length n and code distance
3 – i.e. the Hamming code – is usually denoted as Hn.

For any code D ⊂ Fn a detection kernel (see [1]) is defined as the set of
masked errors for all of the codewords: Kerd(D) = {e ∈ Fn|e+d ∈ D, ∀d ∈ D}.
If D is a linear code, then Kerd(D) = D.

Let AlgD be an error correcting algorithm for the code D. If Der is a set of
errors which AlgD tries to correct, then a correction kernel (see [1]) is defined
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as Kerc(D) = {e ∈ Fn|e /∈ Der, d ∈ D, e′ ∈ Der, AlgD(e, d) = AlgD(e′, d)}. The
correction kernel of the Hamming code is Kerc(Hn) = {e ∈ Fn|∃i, 1 ≤ i ≤ n :
HeT = HeT

i }, where ei is the vector of weight 1 with nonzero i-th coordinate
position.

A robust code (see [1]) is such a code D ⊂ Fn which Kerd(D) = 0. This
also means that max(x∈Fn\{0})QD(x) < 1, where QD(x) = |d∈D:d+x∈D|

|D| is the
error masking probability of x. There are no undetectable errors for the ro-
bust codes. What is more, their minimum distance is at most 1, therefore
robust codes cannot be used for the error correction. A partially robust code
(see [1]) is a systematic (n, 2k, d)-code D, which detection kernel is smaller
than 2k: |Kerd(D)| < 2k. Such codes have undetectable errors, but the num-
ber of such errors decrease by several orders in comparison with the linear
perfect codes. At the same time, partially robust codes keep some structure
of linear codes. For any code D, the error masking probability is defined as
Qmc(D) = max(e/∈Kerd(D))QD(e). These notions – Kerc, Kerd and Qmc – are
the characteristics allowing to compare codes, which can be effective for the
correcting and detecting multiple errors.

Nonlinearity of some function f : Fk → Fs can be measured by means of its
derivative Dvf(x) = f(x + v) + f(x), where v ∈ Fk. If Pr(E) is the probability
of the event E occurrence, then the measure of the function f nonlinearity Pf

can be defined as follows: Pf = maxv∈Fk\{0}maxb∈FsPr(Dvf(x) = b).
One method of constructing large classes of nonlinear codes with different

properties is a switching method. A code C ′ = (C\R) ∪ R′ is obtained by a
switching of some set R with a set R′ in a binary code C, if the code C ′ has the
same parameters as C. The first switching code construction was given by Yu.L.
Vasil’ev in [3]: if Cs is any perfect binary code of length s, and f : Cs → {0, 1}
is some boolean function, then the set V 2s+1 = {(x + c, |x| + f(c), x) : x ∈
Fs, c ∈ Cs} is a perfect binary code of length 2s + 1 with the code distance 3.
If f is a nonlinear function, then the code V 2s+1 is nonlinear one.

It is proved in [1] that the Vasil’ev code V 2s+1 is a partially robust code
with the power of detection kernel |Kerd(V 2s+1)| = 2s and the error masking
probability Qmc(V 2s+1) = Pf . Therefore, |Kerd(V 2s+1)| = 2s < 22s−log2(s+1) =
|Kerd(H2s+1)|, and the Vasil’ev code has less undetectable errors than the
Hamming code. Also, M. Karpovsky, K.J. Kulikowski and Z. Wang in [1] proved
partially robustness for the generalization of extended Vasil’ev codes. Such
codes (called shortened Vasil’ev codes V̄ n=a+s+2) exist for any code length n ≥
4. Bounds for the error masking probability, and the number of undetectable
and miscorrected errors are found in that paper. The given classic switching
construction of Vasil’ev was further generalized by M. Mollard.

In this paper, the Mollard construction [2] is considered. It is proved that
the Mollard code is a partially robust code. Also a generalization of such
classic construction, error correcting algorithm and comparative analysis of
corresponding characteristics of Mollard and Vasil’ev codes are given.
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2 The generalized Mollard construction

An arbitrary vector x ∈ Ftm can be written down as follows: x = (x11, x12, . . . ,
x1m, x21, x22, . . . , x2m, . . . , xt1, xt2, . . . , xtm). It could be also written down as a
matrix Xtm with t rows and m columns. The generalized parity check functions
are the followng functions: p1(x) = (v1, v2, . . . , vt) ∈ Ft, vi =

∑m
j=1 xij , p2(x) =

(w1, w2, . . . , wm) ∈ Fm, wi =
∑t

i=1 xij . Let At and Bm be two arbitrary binary
codes of length t and m respectively and the codes distance at most 3. Without
lost of generality, we assume that both of these codes contain the all-zero vector.
Let f : At → Fm be any function. The following theorem states the classic
Mollard code construction.

Theorem 1. (Mollard M., [2]) A set Mn = {(x, a+p1(x), b+p2(x)+f(a))|x ∈
Ftm, a ∈ At, b ∈ Bm} is a binary code of length n = tm + t + m which minimal
distance equals to 3.

If At and Bm are two perfect binary codes of length t = 2t1 − 1 and m =
2m1 − 1 respectively, then Mn is also a perfect binary code. Taking m = 1 in
the Mollard construction, one can obtain some Vasil’ev code. But there exist
perfect Mollard codes which are not equivalent to the perfect Vasil’ev codes.
The Mollard construction let us to obtain nonlinear codes if f is nonlinear
function. The power of the detection kernel of Mn is given further.

Lemma 1. If At and Bm are systematic perfect codes, the Mollard code Mn =
{(x, a + p1(x), b + p2(x) + f(a))|x ∈ Ftm, a ∈ At, b ∈ Bm} is systematic.

Let At and Bm be arbitrary systematic perfect codes with parameters (t =
2t1 − 1, 2t

t+1 , 3) and (m = 2m1 − 1, 2m

m+1 , 3) respectively. Therefore, the code At

has t − t1 information bits and t1 redundant bits, the code Bm has m − m1

information bits and m1 redundant bits. Without lost of generality, we assume
that the first t− t1 bits in any codeword from At and the first m−m1 bits in
any codeword from Bm are the information ones.

If P1 : Ftm → Ft and P2 : Ftm → Fm are such mappings that the code
distance of (x, P1(x), P2(x)) equals to 2, the following theorem is true.

Theorem 2. The Mollard code M tm+t+m = {(x, a + P1x, b + P2x + f(a))|x ∈
Ftm, a ∈ At, b ∈ Bm} with parameters (tm + t + m, 2tm+t+m

tm+t+m+1 , 3) is a partially
robust code with |Kerd(M tm+t+m)| = 2tm+m

m+1 and Pf = Qmc(M tm+t+m).

The classic Mollard construction can be generalized to build partially robust
codes with any given code length n. Let f : At → Fm be an arbitrary nonlinear
function such that f(0) = 0.

Theorem 3. The code M̃n = {(x, a + p1(x, 0), b + p2(x, 0) + f(a))|x ∈ Fz, 0 ∈
Ftm−z, 0 < z ≤ tm, a ∈ At, b ∈ Bm} is a partially robust code with parameters
(n = z+t+m, 2z+t+m

tm+t+m+1 , 3), where |Kerd(M̃n)| = 2z+m

m+1 , and the error masking
probability Qmc(M̃n) = Pf . Adding one linear parity check bit to M̃n, we get a
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partially robust code M̄n with the code distance 4, and power of detection kernel
and max(e/∈Kerd(D))QD(e) like that of the code M̃n.

3 Memory protection architecture of the extended
generalized Mollard code

Let HA and HB be the check matrixes of At and Bm respectively. If c = (c1 =
x, c2 = a + p1(x, 0), c3 = b + p2(x, 0) + f(ya), c4 = p(x) + p(a) + p(b) + p(f(ya)))
is the codeword from M̄n, c̃ = (c̃1, c̃2, c̃3, c̃4) is the gotten distorted vector, then
c = c̃ + e, where e = (e1, e2, e3, e4) is the error vector.

Let yA and yB be the information bits of At and Bm, rA and rB be the
redundant bits of At and Bm, and ỹA and ỹB be the distorted information
bits of At and Bm respectively. For the localization and correction of errors,
let us define the signature S = (S1, S2, S3) for the vector c̃ as follows: S1 =
HA(p1(c̃1, 0) + c̃2), S2 = HB(p2(c̃1, 0) + f(ỹA) + c̃3), S3 = p(c̃1) + p(p1(c̃1, 0)) +
p(p2(c̃1, 0)) + p(c̃2) + p(c̃3) + p(c̃4).

The purpose of the attached algorithm is to correct single errors in the
information part of the code, and to declare multiple errors and single errors in
the redundant part of the code as well. Recall that the length of the information
part of M̄n equals to z + t + m− log2(t + 1)− log2(m + 1).

The error correction algorithm

Let us compute the signature S = (S1, S2, S3) for the word c̃, where S1 ∈
Flog2(t+1), S2 ∈ Flog2(m+1), S3 ∈ F1.
1. If S = 0log2(t+1)+log2(m+1)+1, then errors are not detected. Otherwise, there
exist one or more errors, which is/are detected.
2. If S3 equals to 0, and at least one value from S1 and S2 does not equal to 0,
then errors of even multiplicity are detected.
3. If S3 = 1, S2 = 0log2(m+1), S1 = 0log2(t+1), then e4 = 1. Therefore, a single
bit error in the z + t + m + 1th bit of the code occurred. The error is detected,
and there will be no attempt to correct it.
4. If S3 = 1, S1 = 0log2(t+1), S2 = hBk , where hBk is the kth column of HB,
then a single bit error in the third part of the code, or multiple errors of odd
multiplicities are detected.

a) if k ≤ m− log2(m + 1), switch the (z + t + k)-th bit of c and recalculate
S2. If S2 = 0, then the single error in the (z + t + k)-th bit of c is detected and
successfully corrected. Else, multiple errors of odd multiplicities are detected.

b) if k > m− log2(m + 1), then the error occurred in the redundant bits of
Bm. The error is detected, and there will be no attempt to correct it.
5. If S3 = 1, S1 = hAi , S2 = 0, where hAi is the i-th column of HA, then a
single bit error in the second part of the code or multiple errors are detected.
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a) if i ≤ t− log2(t + 1), switch the z + i-th bit of c and recalculate S1 and
S2. If S1 = 0log2(t+1) and S2 = 0log2(m+1), then the single error in the i-th bit of
c2 – i.e. in the z + i-th coordinate of c – is detected and successfully corrected.
Else, multiple errors occurred in the second part of the code.

b) if i > t− log2(t+1), then the error occurred in the redundant bits of At.
The error is detected, and there will be no attempt to correct it.
6. If S3 = 1, S2 = hBj′ , S1 = hAi′ , where hAi′ and hBj′ are the i′-th and
the j′-th columns of HA and HB respectively, then the single error in one of
{1, . . . , z + t}-th bits, or multiple errors are detected.

a) if 1 ≤ (i′ − 1)m + j′ ≤ t − log2(t + 1) ≤ z or 1 ≤ (i′ − 1)m + j′ ≤ z ≤
t− log2(t + 1), let us switch the i = (i′− 1)m + j′-th bit of c and recalculate S1

and S2. If S1 = 0log2(t+1) and S2 = 0log2(m+1), then the single error in the i-th
coordinate of c is detected and successfully corrected.

Otherwise, let us switch the i′-th bit of c2 and recalculate S1 and S2. If
S1 = 0log2(t+1) and S2 = 0log2(m+1), then the single error in the z + i-th bit of
c is detected and successfully corrected.

In the other cases, multiple errors occurred.
b) if 1 ≤ z ≤ (i′ − 1)m + j′ ≤ t− log2(t + 1), we switch the i′-th coordinate

of c2 and recalculate S1 and S2. If S1 = 0log2(t+1) and S2 = 0log2(m+1), then the
single error in the z+ i-th coordinate of c is detected and successfully corrected.
Otherwise, multiple errors occurred.

c) if 1 ≤ t − log2(t + 1) ≤ (i′ − 1)m + j′ ≤ z, let us switch the i =
(i′− 1)m+ j′-th bit of c, and recalculate S1 and S2. If S1 = 0log2(t+1) and S2 =
0log2(m+1), then the single error in the i-th bit of c is detected and successfully
corrected. Otherwise, the single error in the redundant bits of At or multiple
errors occurred.

d) if 1 ≤ t − log2(t + 1) ≤ z ≤ (i′ − 1)m + j′ or 1 ≤ z ≤ t − log2(t + 1) ≤
(i′−1)m+j′, then the single error in the redundant bits of At or multiple errors
occurred. They are detected, but there will be no attempt for correction.

In all the other cases, multiple errors of odd multiplicity ≥ 3 are detected.

Let kA and kB be the dimensions of the codes At and Bm correspondingly:
kA = t− log2(t + 1), kB = m− log2(m + 1). The next theorem is true.

Theorem 4. Let M̄n be the extended generalizeed Mollard code with param-
eters (z + m + t + 1, 2z+m+t

tm+t+m+1 , 4). There are 2z( 2t

t+1 − 1) errors which are
conditionally detectable and |Kerd| = 2z+m

m+1 undetectable errors. If only errors
occurred to the information part of the code are corrected, the number of errors
which are conditionally miscorrected is kAkB · 2z+kA(2kB − 1), and the number
of miscorrected errors is kA(2z+kA+m − 1) + kB2z+kB − z. The conditionally
detectable error masking probability and the conditionally miscorrected errors
miscorrection probability are limited by nonlinearity Pf of function f .
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4 Conclusion

The generalized Mollard code, as well as the shortened Vasil’ev code, is able to
correct all the single errors and to detect multiple errors. It is easy to see that
the number of undetectable and miscorrected multiple errors for the generalized
Mollard code is much smaller than for the Hamming code.

If V̄ n = V̄ a+s+2 and M̄n = M̄z+m+t+1 are the shortened Vasil’ev code of
length n and the generalized Mollard code of length n respectively, n = 2k1 +n1,
where 0 ≤ n1 < 2k1 , k2 = [log2(n1)], then s = t = 2k1−1, a = n1−1, n1 = z+m,
n1 = 2k2 + n2, 0 ≤ n2 < 2k2 . Recall that |Kerd(V̄ n)| = 2n1−1, |V̄ n| = 2n−k1−2,
|Kerd(M̄n)| = 2z+m

m+1 , |M̄n| = 2n−k1−k2−1. Hence, if t = 2k1−1 and m = 2k2−1,
then the number of masked errors of M̄n is 2k2−1 = m+1

2 times smaller than
the number of masked errors of V̄ n. At the same time, the power of M̂n is also
2k2−1 = m+1

2 times smaller than the power of V̄ n.
If the correlation (t + 1)(m + 1) = 2k1+1 is true for some code M̄n (i.e. in

a fixed length n the code M̄n has the highest power), and t = 2[log2(n−1)] (i.e.
|Kerd(M̄n)| ≥ |Kerd(V̄ n)|), then m = 1 and this code M̄n is a Vasil’ev code.

Because the decreasing of t (in a fixed code length n) causes the increasing
of z + m, the power of Kerd(M̄n) is greater than the power of Kerd(V̄ n) while
t < 2[log2(n−1)].

It is easy to see that the number of miscorrected errors of M̄n is less than
the number of miscorrected errors of V̄ n while t < 2k1−1 and a > s−log2(s+1).
But the power of M̄n is less than or equal to the power of V̄ n.

To some up, for some parameters, the Mollard codes have less undetectable
and miscorrected errors (and power) than the Vasil’ev codes. Therefore, if
multiple bit corruption or repeating errors exist, this construction can provide
better protection. The class of different Mollard codes is greater than the class
of different Vasil’ev codes. Therefore, there are some advantages to using the
extended generalized Mollard codes.
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