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Abstract. A new ensemble of quasi-cyclic LDPC codes based on repetition codes
and permutation matrices is presented. An estimation of minimum distance for
proposed codes is obtained. The results of simulation of obtained code constructions
for an iterative ”belief propagation” (Sum-Product) decoding algorithm, applied
in the case of transmission of a code word via a binary channel with an additive
Gaussian white noise and BPSK modulation, are presented.

1 Introduction

Low-density parity-check codes (LDPC-codes) were proposed by Gallager in
[1]. There are linear block codes defined by their parity-check matrices H
characterized by a relatively small number of ones in their rows and columns.
It is often convenient to consider LDPC code as it’s Tanner graph [2], where
connected symbolic and code vertices are used for representation of rows and
columns of parity-check matrix.

An important characteristic of an LDPC code is absence of cycles of certain
length. A cycle of length 4 (4-cycle) can be understood as a rectangle in the
parity-check matrix whose vertices are ones. Cycles of larger length are defined
by the girth of the Tanner graph.

Apart from random LDPC codes, various algebraic constructions of low-
density parity-check codes based on permutation matrices [3], projective geome-
tries [4], and other combinatorial constructions [5] are often used in practice.

The main objective of this work is to construct and explore properties of an
ensemble of low-density parity-check codes based on two algebraic constructions
simultaneously: [n0, 1, n0] repetition code (n0 > 1) and permutation matrices.
As a result we obtain low rate LDPC codes with simple encoding and good
minimum distance (especially for short code lengths).

1The research is supported by RSCF, research project No. 14-50-00150
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2 Main definitions and notation

Notation 1. Under R(n0) we shall assume [n0, 1, n0] (n0 > 1) repetition code
of length n0 and minimum distance dmin = n0.

Notation 2. Under GFm(2) (m > 1, m ∈ N) we shall assume a vector space
of length m vectors over GF (2).

Notation 3. Let y ∈ GFm(2), then under ||y|| we shall assume hamming
weight of y.

Notation 4. Let y ∈ GFm(2), then under supp(y) we shall assume a support
of y, i. e.

supp(y) = {j : yj = 1}.

Notation 5. Let y ∈ GFm(2), p ∈ Z,then under the set p + supp(y) we shall
assume:

p + supp(y) = {j + p mod m : yj = 1}.

Definition 1. Let m > 1, m ∈ N and I is a m×m unity matrix. Let us choose
an arbitrary p ∈ Z, then under Ip we shall assume a matrix of p-times right
cyclic shift of columns (or rows) of I.

It is easy to note that the set Im = {Ip : p ∈ Z} of m×m matrices Ip is a
cyclic group with generator I1.

If
c = yIp,

and supp(y) is the support of y, then

supp(c) = p + supp(y).

Now let us formulate simple lemma which is the basis of the main result of
this paper.

Lemma 1. If Ip ∈ Im, y ∈ GFm(2), ||y|| = w, and supp(y) = p + supp(y)
then pw ≡ 0 mod m.

This lemma has an important corollary:

Corollary 1. If y ∈ GFm(2), ||y|| = w, p ∈ Z and m ∈ Z is prime, then
supp(y) = p + supp(y) only when w = m or w = 0.
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3 Construction of LDPC codes based on repetition
codes and permutation matrices

Let us consider a parity-check matrix Hb of R(n0) and choose m > 1, k0 > 0,
m, k ∈ N. Moreover, consider the group Im and choose 2(n0 − 1)k2 arbitraty
matrices Ipj , pj ∈ N, j = 1..2(n0 − 1)k2

0 from Im. Let us separate the set S of
chosen matrices on 2(n0 − 1) equipotent subsets Si, i = 1..2(n0 − 1), |Si| = k2

0
and compose block matrix Qi from the elements of Si k0 × k0. Matrix Qi has
the following structure:

Qi =




Ipi1 Ipi2 Ipi3 . . . Ipik0

Ipi(k0+1)
Ipi(k0+2)

Ipi(k0+3)
. . . Ipi(2k0)

. . . . . . . . . . . . . . .
Ip

i(k2
0−k0+1)

Ip
i(k2

0−k0+2)
Ip

i(k2
0−k0+3)

. . . Ip
ik2

0


 .

If one substitute each unity in Hb on the matrix Qi and each zero on mk0×
mk0 all zeros matrix Z then the matrix

H =




Q1 Qn0 0 0 . . . 0
Q2 0 Qn0+1 0 . . . 0
. . . . . . . . . . . . . . . . . .

Qn0−1 0 0 . . . 0 Q2(n0−1)




has the size mk0(n0− 1)×mkn0, all rows have weight 2k0, weights of first mk0

columns are k0(n0 − 1), other columns have weight k0.
We will consider matrix H as a parity-check matrix of LDPC code.
Thus, choosing an arbitrary numbers m > 1, k0 > 0 and 2(n0−1)k2

0 random
elements from the group Im one can determine an ensemble of LDPC codes with
the length n = mk0n0. Let us denote this ensemble as ERC(m, k0, n0).

Definition 2. An arbitrary code C ∈ ERC(m, k0, n0), will be called a LDPC
code based on R(n0) and permutation matrices.

4 Lower bound on the minimum distance of code
from ERC(m, k0, n0)

In order to obtain the main result of this paper we have to formulate some
auxiliary results. Since some proofs of these results are rather complex we will
omit them.

One can show that the weight of any codeword from C ∈ ERC(m, k0, n0) (in
the case of some limitations on k0 and n0) is even.
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Lemma 2. Let C ∈ ERC(m, k0, n0) then for all k0, n0, (expect the case when
simultaneously k0 is even, and n0 is odd) and for any c ∈ C: ||c|| = 2t, t ∈ N.

Further we shall assume that conditions of lemma 2 hold. The following re-
sult provides simple estimation on the minimum distance of C ∈ ERC(m, k0, n0).

Lemma 3. Let H is a parity-check matrix of code C from the ensemble ERC(m, k0, n0).
If H has girth greater than 4, then dmin(C) ≥ 4.

In order to simplify further reasoning, we will suppose that n0 = 4, k0 = 2
although all derivations can be generalized for cases when n0 > 4, k0 = 2.

Now let us formulate the following lemma which improves the estimation
on the minimum distance of codes from ERC(m, k0, n0).

Lemma 4. Let H is the parity-check matrix of code C from ERC(m, 2, 4). If
this matrix is free of cycles of length 4 and m > 5 is prime number, then
dmin(C) ≥ 8.

Now we can formulate the main result of this paper.

Theorem 1. Let H is the parity-check matrix of code C from ERC(m, 2, 4) for
which the conditions of lemma 4 hold, and, moreover, let at least one sub-matrix
(Qi Q3+i) of H (i = 1..n0 − 1) is free of cycles of length 8, then dmin(C) ≥ 10.

This theorem can be generalized for more wide class of codes. Namely, the
following result take place:

Corollary 2. Let H is the parity-check matrix of code C from the ensemble
ERC(m, 2, n0), where n0 > 3 and m > 5 is a prime. If H does not contain cycle
of length 4, and at least one submatrix (Qi Qn0+i−1) (i = 1..n0 − 1) of matrix
H is free of cycles of length 8 then dmin(C) ≥ 10.

One can notice that in the case when n0 > 4 the requirement about absence
of cycles of length 8 in (Qi Qn0+i−1) (i = 1..n0−1) can be omitted since not all
syndrome components Sj (j = 1..n0 − 1) include 4 vectors of weight 1. Thus,
the following result is fulfilled:

Corollary 3. Let H is the parity-check matrix of code C from ERC(m, 2, n0),
where n0 > 4 and m > 5 is prime. If H is free of cycles of length 4 then
dmin(C) ≥ 10.

5 Simulation results

In order to generate parity-check matrices of LDPC codes from ERC(m, 2, n0)
MatLab function was written. Simulation was made by methods of simulation
modelling using MatLab. For an information transmission channel, we chose
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Table 1: Code constructions

m n0 k0 n R dmin

7 4 2 56 0.3036 12
11 4 2 88 0.2841 16

a binary BPSK channel with additive white Gaussian noise. For a decoding
algorithm, we chose an iterative algorithm Sum-Product (with maximum 50
iterations).

We considered 2 codes with the parameters presented in table 1.
It should be noted that for (n, k) = (56, 17), (88, 25) there are best binary

linear codes with minimum distances 17 (untyped linear code) and 24 (shortened
BCH code) correspondingly. But parity-check matrices for these codes are dense
therefore these codes can not be decoded with complexity O(n log n). Also it
should be noted that for our proposed codes we can correct more than dmin−1

2
errors due to soft decision decoder. For best linear codes only bounded-distance
hard decoding is known.

Table 2: Simulation results for codes n = 56

EbNo -1 0 1 2 3 4
Pb, error rate 0.2641 0.2403 0.2127 0.1868 0.1578 0.1316

Nerr, proposed 11.0040 10.9047 10.4826 9.6954 8.6023 7.2772
D(Nerr), proposed 4.9043 5.1476 5.5260 5.9559 6.4265 5.9737

Nerr, PEG 10.5425 10.4382 9.9662 9.2875 8.3359 7.1966
Nerr, ACE 10.1423 9.9766 9.4482 8.6091 7.4053 6.0390

Table 3: Simulation results for codes n = 88

EbNo -1 0 1 2 3 4
Pb, error rate 0.2641 0.2403 0.2127 0.1868 0.1578 0.1316

Nerr, proposed 18.0075 17.8215 17.0181 15.7003 13.7815 11.5279
D(Nerr), proposed 8.7169 8.2511 9.3533 10.2527 10.7915 9.9045

Nerr, PEG 16.0402 16.4992 15.9713 15.1887 13.5802 11.4315
Nerr, ACE 17.2638 16.7949 15.9119 14.4674 12.4906 10.1992
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Simulation results presented in tables 1 – 2 allow us to conclude that our
proposed codes not worse than codes based on ACE [7] and PEG [6] algorithms
(in terms of an average number of corrected errors Nerr, also we include a
dispersion D(Nerr) of random variable Nerr for our proposed codes). Irregular
LDPC code based on PEG algorithm shows the same behaviour as our proposed
codes. In other hand, codes from ERC(m, k0, n0) have more simple structure
(since ERC(m, k0, n0) is sub ensemble of quasi-cyclic LDPC codes). This fact
allows us to optimize a storage of parity-check matrix, while codes based on
PEG algorithm has random structure.

6 Conclusion

A new ensemble of quasi-cyclic LDPC codes based on repetition codes and
permutation matrices is presented. An estimation of minimum distance for
proposed codes is obtained. Simulation results allow us to conclude that our
proposed codes not worse than codes based on ACE and PEG algorithms.
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