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Abstract. We have constructed a new class of multicomponent codes which have
maximal cardinality at the following parameters: n = m + δ is code length, d = 2δ
is code distance, m = rδ is dimension, where r is an integer. It was shown that
these codes have maximal cardinality which coincides with Johnson upper bound I.
Dual multicomponent codes were constructed correspondingly to these new codes.
These dual codes are spreads.

1 Introduction

Let m ≤ n be integers. Let Mn
m be a set of matrices of size m × n and of

rank m over the field GF (q). Define R(U) the row spanned subspace of the
U ∈ Mn

m matrix. The subspace distance between two subspaces R(U) and
R(V) is defined as

d(R(U),R(V)) = dim (R(U) ]R(V))− dim (R(U) ∩R(V)) .

The subspace distance between two subspaces of the same dimension is even.
A network code of constant dimension m and cardinality A(n, d = 2δ,m) with
minimal subspace distance d = 2δ is defined as a set of m-dimensional sub-
spaces R(U1),R(U2), . . . ,R(UA), where d(R(Ui),R(Uj)) ≥ 2δ, i 6= j and the
parameter δ ≤ m. The main problem is the following: to construct a network
code of maximal cardinality under given parameters {n, d = 2δ,m}.

2 Silva–Koetter–Kschischang (SKK) codes

Subspaces are often defined by means of their generator matrix. Rows of these
matrices are a basis of the subspace. The generator matrices of SKK code [1]
are presented as

Cskk = {Ui} =
{[

Im Mi

]}
,

where Im is the identity matrix of order m, and Mi, i = 1, . . . , A, are matrices
of rank code of size m × (n −m) over the field GF (q) [5]. Subspace distance
between R(Ui) and R(Uj) is equal to d(R(Ui),R(Uj)) = 2Rk(Mi − Mj).
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Rank distance between two matrices Mi, Mj is rank of their difference. There
exists a linear rank code consisting of m×n matrices with minimal rank distance
δ and cardinality A = qa(b−δ+1), where a = max{m, (n−m)} b = min{m, (n−
m)}. Hence, the network SKK code has the following parameters: n is length,
d = 2δ is subspace distance, m is dimension of code subspaces, A = qa(b−δ+1)

is number of code subspaces.

3 Multicomponent code with zero prefix (MZP)

In 2008 year a class of multicomponent codes with maximal subspace distance
d = 2m was presented by Gabidulin and Bossert [2], [3]. The s-th component
Cmzp(s) (s = 1, 2, . . . , r) consists of the following m× n matrices:

Cmzp(s) =
{[

Om . . .Om︸ ︷︷ ︸
s−1

Im Ms

]}
,

where r ≥ 2. The first component (s = 1) has no zero prefix. It coincides
with SKK code: Cmzp(1) = Cskk. The matrices Ms are m× (n−m− (i− 1)m)
matrices of a Gabidulin code with rank distance δ = m. Consider a code with
the following parameters: n is code length, m is dimension of the code subspace,
d = 2δ is the subspace code distance. Denote as = max{m, (n−m− (s− 1)δ)}
and bs = min{m, (n −m − (s − 1)δ)}. The cardinality of the s-th component
of MZP code is equal to

A(s) = |Cmzp(s)| = qas(bs−δ+1). (1)

The total cardinality is equal to sum of cardinality of all components [4]:

Cmzp =
r∑

s=1

qas(bs−δ+1).

Example 1. We construct MZP code at the following parameters: n = 4δ, d =
2δ, m = 3δ. The first component is SKK code:

C(1) =
{[

I3δ Mδ
3δ

]}
=








Iδ 0 0 Mδ
δ(1)

0 Iδ 0 Mδ
δ(2)

0 0 Iδ Mδ
δ(3)








.

The second component is

C(2) =
{[

0δ
3δ I3δ

]}
=







0 Iδ 0 0

0 0 Iδ 0
0 0 0 Iδ








.
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The cardinality of this code is

Mmzp = |C(1)|+ |C(2)| = q3δ + 1.

The second component provides only one extra code matrix for these parameters.

4 Johnson upper bound I

4.1 Johnson theorem

Theorem 1. [Johnson I] Let n, d = 2δ, m be network code parameters. If

(qm − 1)2 > (qn − 1)(qm−δ − 1), (2)

then

A(n, d = 2δ,m) ≤
⌊

(qm − qm−δ)(qn − 1)
(qm − 1)2 − (qn − 1)(qm−δ − 1)

⌋
.

The condition (2) is satisfied, if δ = m. In this case Johnson upper bound
I [11] coincides with Wang upper bound [6]:

A(n, d = 2m,m) ≤
⌊

qn − 1
qm − 1

⌋
.

4.2 Corollaries

Corollary 1. For δ ≤ m, the condition (2) is satisfied if and only if

n ≤ m + δ.

Corollary 2. If n < m + δ, then the cardinality of a MZP code is

A(n, d = 2δ,m) = 1.

Corollary 3. If n = m + δ, then

A(n, d = 2δ,m) ≤
⌊

qn − 1
qδ − 1

⌋
.

It is Johnson upper bound I. Wang upper bound for these parameters is much
greater.

Corollary 4. If n = m+δ, then the dimension of a dual code is m′ = n−m = δ.
The cardinality is

A(n, d = 2δ,m′) = A(n, d = 2δ, δ).

This estimation coincides with Wang upper bound for spreads. Their code dis-
tance is equal to double code dimension (maximal).
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5 A new construction

We modify MZP code. We describe a new construction by means of an example.

Example 2. Let parameters be n = 4δ, d = 2δ, m = 3δ. A new algorithm
is used for the reconstruction of a MZP code. The first component of the new
construction is SKK code as usually:

C̃(1) =
{[

I3δ Mδ
3δ

]}
=








Iδ 0 0 Mδ
δ(1)

0 Iδ 0 Mδ
δ(2)

0 0 Iδ Mδ
δ(3)








The second component is constructed by another way in comparison with the
second component of the previous construction:

C̃(2) =







Iδ 0 Aδ

δ(1) 0

0 Iδ Aδ
δ(2) 0

0 0 0 Iδ








,

where Aδ
δ(1) and Aδ

δ(2) are δ × δ matrices of rank codes with rank distance δ.
The third component is the following:

C̃(3) =







Iδ Bδ

δ 0 0

0 0 Iδ 0
0 0 0 Iδ








,

where Bδ
δ is a δ × δ matrix of a rank code with rank distance δ. The fourth

component coincides with the second component of the previous construction:

C̃(4) = C(2) =



0 Iδ 0 0

0 0 Iδ 0
0 0 0 Iδ


 .

The cardinality of the new modified code is greater then the cardinality in the
former construction:

Mmod = |C̃(1)|+ |C̃(2)|+ |C̃(3)|+ |C̃(4)| = (q3δ + 1) + (q2δ + qδ)

= q4δ−1
qδ−1

.
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6 General case: m = rδ

Let us use Johnson theorem restriction on code lengths and put n = m+δ, where
m = rδ, r is an integer. We will construct new multicomponent codes which
have maximal cardinality. Present components of the new multicomponent
code. As usually the first component is SKK code. The s-th component (s < r)
is

C̃(s) =

{[
I(r−s)δ Uδ

(r−s)δ 0sδ
(r−s)δ

0(r−s)δ
δ 0δ

δ Isδ

]}

The last r-th component is

C̃(r) =
[
0δ

rδ Irδ

]
.

The cardinality of this code is equal to

Mmod = |C̃(1)|+ · · ·+ |C̃(r − 1)|+ |C̃(r)| = q(r+1)δ−1
qδ−1

.

7 Dual codes – spreads

Consider codes which are dual to components of the new multicomponent code.
We have the first component of the new code as

C̃(1) =
{[

Irδ Mδ
rδ

]}
.

The corresponding dual component is

C̃⊥(1) =
{[
−(M>)rδ

δ Iδ

]}
.

We have the s-th component (s < r) of the new code

C̃(s) =

{[
I(r−s)δ Uδ

(r−s)δ 0

0(r−1)δ
δ 0δ

δ Isδ

]}
.

The corresponding dual component is as follows:

C̃⊥(s) =
{[
−(U>)(r−s)δ

δ Iδ 0sδ
δ

]}
.

We have the last r-th component as

C̃(r) =
[
0δ

rδ Irδ

]
.

The corresponding dual component is

C̃⊥(r) =
{[

Iδ 0rδ
δ

]}
.

The dual codes at the dimension m̃ = δ and the subspace distance d = 2m̃ = 2δ
present spreads which have maximal cardinality [7] – [10].
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8 Conclusion

We have constructed a new class of multicomponent codes which have maximal
cardinality. It allows to extend the class of optimal codes which achieve Johnson
upper bound I at the following parameters: n = m+δ. Johnson upper bound is
more exact than Wang upper bound for these parameters. Correspondingly to
the new class of codes we have constructed dual multicomponent codes which
are spreads.
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