
Fifteenth International Workshop on Algebraic and Combinatorial Coding Theory
June 18-24, 2016, Albena, Bulgaria pp. 139–144

Adaptive Learning a Hidden Hypergraph 1

A. G. D’yachkov agd-msu@yandex.ru
Lomonosov Moscow State University, Moscow, Russia

I.V. Vorobyev vorobyev.i.v@yandex.ru
Lomonosov Moscow State University, Moscow, Russia

N.A. Polyanskii nikitapolyansky@gmail.com
Lomonosov Moscow State University, Moscow, Russia

V.Yu. Shchukin vpike@mail.ru
Lomonosov Moscow State University, Moscow, Russia

Abstract. Learning a hidden hypergraph is a natural generalization of the
classical group testing problem that consists in detecting unknown hypergraph
Hun = H(V, E) by carrying out edge-detecting tests. In the given paper we fo-
cus our attention only on a specific family F(t, s, `) of localized hypergraphs for
which the total number of vertices |V | = t, the number of edges |E| 6 s, s ¿ t,
and the cardinality of any edge |e| 6 `, ` ¿ t. Our goal is to identify all edges
of Hun ∈ F(t, s, `) by using the minimal number of tests. We provide an adaptive
algorithm that matches the information theory bound, i.e., the total number of tests
of the algorithm in the worst case is at most s` log2 t(1 + o(1)).

1 Introduction

Before we introduce the problem, let us recall some definitions and notations.
Let |A| denote the size of a set A, and [N] , {1, 2, . . . , N} - the set of integers

from 1 to N . A hypergraph is a pair H = H(V, E) such that E ⊂ 2V \∅, where
V is the set of vertices and E = {e1, . . . es} is a set of edges. A vertex v ∈ V
is called active, if there exists at least one edge e ∈ E such that v ∈ e. A set
S ⊂ V is called an independent set of H if it contains no entire edge of H. We
denote by dim(H) the cardinality of the largest edge, i.e. dim(H) = max

e∈E
|e|.

1.1 Statement of the problem

The problem of learning a hidden hypergraph is described as follows. Suppose
there is an unknown (hidden) hypergraph Hun = H(V,E) whose edges are not

1The research is supported in part by the Russian Foundation for Basic Research under
Grant No. 16-01-00440.

140 ACCT2016

known to us, but we know that the unknown hypergraph Hun belongs to some
family F of hypergraphs that have a specific structure (e.g, F consists of all
Hamiltonian cycles on V). Our goal is to identify all edges of E by carrying out
the minimal number N of edge-detecting queries Q(S), where S ⊆ V : Q(S) =
0 if S is independent of Hun, and Q(S) = 1 otherwise.

In the given paper we focus our attention only on the family of localized
hypergraphs. We consider the family F(t, s, `), that consists of all hypergraphs
H(V, E) such that dim(H) 6 ` and |E| 6 s. Suppose we know that the hyper-
graph Hun belongs to the family F(t, s, `). An algorithm is said to be F(t, s, `)-
searching algorithm if it finds Hun, i.e. there exists only one hypergraph from
F(t, s, `) that fits all answers to the queries.

One of the most important aspects of any searching strategy is its adaptive-
ness. An algorithm is non-adaptive if all queries are carried out in parallel. An
algorithm is adaptive if the later queries may depend on the answers to earlier
queries.

By Nna(t, s, `) (Na(t, s, `)) denote the minimal number of queries in a
F(t, s, `)-searching non-adaptive (adaptive) algorithm. Introduce the asymp-
totic rate for optimal F(t, s, `)-searching algorithms:

Rna(s, `) , lim
t→∞

log2 t

Nna(t, s, `)
, Ra(s, `) , lim

t→∞
log2 t

Na(t, s, `)
.

The given paper is organized as follows. In Sect. 2, we discuss previously
known results and remind the concept of cover-free codes which is close to the
subject. In Sect. 3, we present the main result of the paper and provide the
deterministic adaptive algorithm that matches the information theory bound.

2 Previous Results

For the particular case ` = 1, the above definitions were already introduced
to describe the model called designing screening experiments. It is a classical
group testing problem. We refer the reader to the monograph [7] for a survey on
group testing and its applications. It is quite clear (e.g., see [7]) that a F(t, s, 1)-
searching adaptive algorithm can achieve the information theory bound, i.e.
N(t, s, 1) = s log2 t(1 + o(1)) as t →∞. Therefore, Ra(s, 1) = 1/s.

If ` = 2, then we deal with learning a hidden graph. One important appli-
cation area for such problem is bioinformatics [6], more specifically, chemical
reactions and genome sequencing. Alon et al. [5], and Alon and Asodi [4]
give lower and upper bounds on the minimal number of tests for non-adaptive
searching algorithms for certain families of graphs, such as stars, cliques, match-
ings. In [6], Boevel et al. study the problem of reconstructing a Hamiltonian

D’yachkov, Vorobyev, Polyanskii, Shchukin 141

cycle. In [3], Angluin et al. give a suboptimal F(t, s, 2)-searching adaptive
algorithm. More precisely, they prove Ra(s, 2) > 1/(12s).

For the general case of parameters s and `, Abasi et al. have recently
provided [8] a suboptimal F(t, s, `)-searching adaptive algorithm. In particular,
from their proofs it follows Ra(s, `) > 1/(2s`). This bound differs up to the
constant factor from the information theory upper bound Ra(s, `) 6 1/(s`).

2.1 Cover-Free Codes

A binary N × t-matrix

X = ‖xi(j)‖, xi(j) = 0, 1, i ∈ [N], j ∈ [t] (1)

is called a code of length N and size t. By x i and x (j) we denote the i-th row
and the j-th column of the code X, respectively.

Before we give the well-known definition of cover-free codes, note that any
F(t, s, `)-searching non-adaptive algorithm consisting of N queries can be rep-
resented by a binary N × t matrix X such that each test corresponds to the
row, and each vertex stands for the column. We put xi(j) = 1 if the j-th vertex
is included to the i-th test; otherwise, xi(j) = 0.

Definition 1. A code X is called a cover-free (s, `)-code (briefly, CF (s, `)-
code) if for any two non-intersecting sets S, L ⊂ [t], |S| = s, |L| = `, S∩L = ∅,
there exists a row x i, i ∈ [N], for which

xi(j) = 0 for any j ∈ S, xi(k) = 1 for any k ∈ L. (2)

Taking into account the evident symmetry over s and `, we introduce Ncf (t, s, `) =
Ncf (t, `, s) - the minimal length of CF (s, `)-codes of size t and define the rate
of CF (s, `)-codes:

Rcf (s, `) = Rcf (`, s) , lim
t→∞

log2 t

Ncf (t, s, `)
. (3)

In [1], Dyachkov et al. show that any CF (s, `)-code represents a F(t, s, `)-
searching non-adaptive algorithm, while any F(t, s, `)-searching non-adaptive
algorithm corresponds to both a CF (s, `− 1)-code and CF (s− 1, `)-code. The
best presently known upper and lower bounds on the rate R(s, `) of CF (s, `)-
codes were presented in [2]. If ` > 1 is fixed and s → ∞, then these bounds
lead to the following asymptotic equality:

(` + 1)`+1

2e`−1

log2 s

s`+1
(1 + o(1)) > Rna(s, `) ' Rcf (s, `) > ``

e`

log2 e

s`+1
(1 + o(1)). (4)

142 ACCT2016

3 New Result

By a counting argument, the lower bound is true.

Theorem 1. Any F(t, s, `)-searching algorithm has at least s` log2 t(1 +
o(1)) edge-detecting queries. In other words, the rate R(s, `) 6 1/(s`).

The key result of this paper is given as follows.

Theorem 2. There exists an adaptive F(t, s, `)-searching algorithm which
has at most s` log2 t(1 + o(1)) edge-detecting queries. In other words, the rate
Ra(s, `) = 1/(s`).

Proof of Theorem 2.

We present the full description of F(t, s, `)-searching algorithm by Alg. 1,
and this algorithm is based on Alg. 3, 2 and 4. Notice that Alg. 2 is a
variation of the binary vertex search. Also one can check that at each step of the
algorithm, set S′ contains at least one new active vertex. Alg. 3 and 4 represent
an exhaustive search of edges and an exhaustive query search, respectively.

Now we upper bound the number of tests of Alg. 1 in the worst scenario. Let
|V | = t. It is easy to check that Alg. 2 makes use of at most dlog2 |S|e 6 dlog2 te
tests. One can see that the number of active vertices of the hidden hypergraph
Hun ∈ F(t, s, `) is at most s`. Alg. 3 uses at most F1(s, `) tests, while Alg. 4
uses at most F2(s, `) tests, where the functions F1 and F2 do not depend on t.
We can upper bound the number of cycles in Alg. 1 by the number of active
vertices. Therefore, the total number of tests for the given adaptive F(t, s, `)-
searching algorithm does not exceed s`(log2 t + F1(s, `) + F2(s, `) + 1). ¤

Data: set of vertices V of H(V, E) ∈ F(t, s, `)
Result: set of edges of Hun

initialization E′ := ∅; F := ∅; S := V ;
while S 6= ∅ do

perform Alg. 2, and find v 6∈ F ;
F := F t v;
perform Alg. 3, and find subset of edges E′;
perform Alg. 4, and find query S;

end
set of edges E′ = E;

Algorithm 1: Searching edges of the hidden hypergraph

D’yachkov, Vorobyev, Polyanskii, Shchukin 143

Data: query S ⊆ V such that Q(S) = 1, and the set of found active
vertices F

Result: vertex v ∈ V , v 6∈ F , and ∃ e ∈ E, v ∈ e
initialization S′ := S \ F ; S′′ := S \ S′;
while |S′| > 1 do

split up S′ into two subsets S1 and S2 of sizes d|S′|/2e and b|S′|/2c:
S′ = S1 t S2;
carry out a query S1 t S′′;
if Q(S1 t S′′) = 1 then

S′ := S1;
else

S′ := S2;
S′′ := S′′ t S1;

end
end
vertex {v} = S′ satisfies the required conditions;

Algorithm 2: Searching another active vertex on the query

Data: subset of active vertices F ⊂ V
Result: subset of edges E′ ⊂ E consisting of vertices of F
initialization E′ := ∅;
for ∀S ⊂ F : 1 6 |S| 6 ` do

if @ e ∈ E′ : e ⊂ S then
carry out query S;
if Q(S) = 1 then

for ∀e ∈ E′ : S ⊂ e do
delete e from E′;

end
add edge e = S to E′;

else
proceed to the next step of the loop;

end
else

proceed to the next step of the loop;
end

end
Algorithm 3: Searching edges composed on found active vertices

144 ACCT2016

Data: subset of edges E′ ⊂ E
Result: or S ⊂ V such that Q(S) = 1, e 6⊂ S for ∀e ∈ E′, either S = ∅
initialization A := {v : v ∈ e ∈ E′}; B := V \A; S := ∅;
for ∀C ⊂ V : B ⊂ C and @ e ∈ E′, e ⊂ C do

carry out query C;
if Q(C) = 1 then

S := C;
break “for loop”;

else
proceed to the next step of the loop;

end
end

Algorithm 4: Searching a query on found edges

References

[1] A. G. Dyachkov, P. Vilenkin, A. Macula, and D. Torney, “Families of finite
sets in which no intersection of sets is covered by the union of s others”,
J. Combin. Theory. Ser. A, 99 (2002), pp. 195-218.

[2] D’yachkov A.G., Vorobyev I.V., Polyanskii N.A., Shchukin V.Yu., “Bounds
on the Rate of Disjunctive Codes”, Problems of Information Transmission,
vol. 50, no. 1, pp. 27-56, 2014.

[3] Angluin D., Chen J., “Learning a hidden graph using O(log n) queries per
edge”, J Comput Syst Sci, v.74, pp. 546-556, 2008.

[4] Alon, N., and Asodi, V, “Learning a hidden subgraph”. SIAM J. Discrete
Math. 18, 4 (2005), pp. 697-712.

[5] Alon, N., Beigel, R., Kasif, S., Rudich, S., and Sudakov, B., “Learning a
hidden matching”. SIAM J. Comput. 33, 2 (2004), pp. 487-501.

[6] Bouvel, M., Grebinski, V., and Kucherov, G. “Combinatorial search on
graphs motivated by bioinformatics applications: A brief survey”. In WG
(2005), pp. 1627.

[7] Du, D.-Z. and Hwang, F.K., “Combinatorial Group Testing and Its Ap-
plications”, Singapore: World Sci., 2000, 2nd ed.

[8] Abasi, H., Bshouty, N.H., and Mazzawi, H., “On Exact Learning Monotone
DBF from Membership Queries”, Lecture Notes in Artificial Intelligence,
2014, pp. 111-124.

