On LCD Codes

JAVIER DE LA CRUZ delacruz@uninorte.edu.co Universidad del Norte, Barranquilla, Colombia WOLFGANG WILLEMS willems@ovgu.de Otto-von-Guericke Universität, Magdeburg, Germany, and

Abstract. We characterize group codes with complementary duals; i.e. ideals C in

Universidad del Norte, Barranquilla, Colombia

Abstract. We characterize group codes with complementary duals; i.e. ideals C in a group algebra KG for which $KG = C \oplus C^{\perp}$. Furthermore, in the rank metric case we give necessary conditions that a Gabidulin code in $K^{n \times n}$ has a complementary dual.

1 Introduction

Let K be a finite field and $n, m \in \mathbb{N}$. According to a definition of Jim Massey [3] a linear code $C \leq K^n$ (the classical case) or $\mathcal{C} \leq K^{m \times n}$ (the rank metric case) is called a Linear Code with Complementary Dual or shortly an LCD code if

 $K^n = C \oplus C^{\perp}$, respectively $K^{m \times n} = \mathcal{C} \oplus \mathcal{C}^{\perp}$.

On K^n we use here the standard Euclidian form and on $K^{m \times n}$ the Delsarte bilinear form which is given by

 $\langle A, B \rangle = \operatorname{trace}(AB^t)$

for $A, B \in K^{m \times n}$, where B^t denotes the transpose of the matrix B.

Classical LCD codes are of particular interest since they are asymptotically good [3], they achieve the Gilbert-Varshamov bound [4] and they play a crucial role in information protection against side channel and fault injection attacks [1]. In the latter case LCD MDS codes are the most powerful. Note that LCD codes are somehow opposite of self-dual codes.

2 Group Codes

A (right) ideal C in a group algebra KG, where G is a finite group, is called a *group code*. On KG we define a non-degenerate G-invariant K-bilinear form by $\langle g, h \rangle = \delta_{g,h}$ where $g, h \in G$. Observe that with C the dual code C^{\perp} is an ideal as well since $\langle \cdot, \cdot \rangle$ is G-invariant. In [5] it has been proved that self-dual group codes only exist if the characteristic of K is 2 and 2 | |G|. For instance, the

extended binary [24, 12, 8] Golay code is a self-dual group code in \mathbb{F}_2S_4 , where S_4 denotes the symmetric group on 4 letters, whereas the extended ternary [12, 6, 6] Golay code is self-dual, but not a group code. To state the main results for LCD group codes we associate to each $a = \sum_{g \in G} a_g g \in KG$ (where $a_g \in K$) the adjoint $\hat{a} = \sum_{g \in G} a_g g^{-1}$. We call a self-adjoint if $a = \hat{a}$.

Theorem 1. If $C \leq KG$ is a (right) ideal in KG, then the following are equivalent.

- a) C is an LCD code.
- b) C = eKG where $e^2 = e = \hat{e}$. In other words, C is generated as an ideal by a self-adjoint idempotent.

With a bit knowledge from representation theory Theorem 1 directly proves the main result of [6] in which the group G is cyclic, i.e. C is a cyclic code.

Theorem 2. If C = eKG with $e^2 = e = \hat{e}$ is an LCD code and char K = 2, then the following are equivalent.

- a) $\langle c, c \rangle = 0$ for all $c \in C$; i.e. C is symplectic.
- b) $\langle 1, e \rangle = 0$; i.e. the coefficient of e at 1 is zero.

Thus, if $K = \mathbb{F}_2$ is the binary field, then a) means that C is an even code.

Example. Let $G = A_5$ be the alternating group on 5 letters and let $K = \mathbb{F}_2$ be the binary field. Furthermore, let *e* denote the sum of all elements of order 3 and 5 in *G*. Then the LCD code C = eKG is even and has parameters [60, 16, 18]. The best known binary code of length 60 and dimension 16 has minimum distance 20 according to [2].

Remark. Cyclic Reed-Solomon codes of length n and dimension 0 < k < n over \mathbb{F}_q are LCD codes if n = q - 1 and $q = 2^m$ (see [1], Lemma 1). The same proof also works if q is odd and k is even. In case q and k odd cyclic Reed-Solomon codes are not LCD codes.

3 Rank Metric Codes

Ideals C in the K-algebra $K^{n \times n}$ which are LCD codes are not of particular interest since one can easily see that the minimum distance of C is 1. However there exist MRD codes which are LCD.

Recall that a basis a_1, \ldots, a_n of \mathbb{F}_{q^n} over \mathbb{F}_q is called self-dual if

$$\operatorname{tr}(a_i a_j) = \sum_{k=0}^{n-1} (a_i a_j)^{q^k} = \delta_{i,j}$$

for $1 \leq i, j \leq n$.

Theorem 3. Let $v = (a, a^q, \ldots, a^{q^{n-1}})$ be the first row of a generator matrix defining a k-dimensional Gabidulin code in $\mathbb{F}_{q^n}^n$, where $a, a^q, \ldots, a^{q^{n-1}}$ is a self-dual (normal) basis of \mathbb{F}_{q^n} over \mathbb{F}_q . Then the corresponding rank metric code is MRD and LCD.

In the theory of finite fields it is well-known that a self-dual normal basis only exists if n is odd, or $n \equiv 2 \mod 4$ and q is even. In case $4 \mid n$ and q even we do not know whether the class of Gabidulin codes in $\mathbb{F}_q^{n \times n}$ always contains LCD codes.

Question. Do have LCD MRD codes applications in cryptography like LCD MDS codes?

References

- C. CARLET and S. GUILLEY, Complementary Dual Codes for Counter-measures to Side-Channel Attacks. Online accessible https://eprint.iacr.org/2015/603.pdf
- [2] M. GRASSL, Bounds on the minimum distance of linear codes. Online accessible http://www.codetables.de
- [3] J.L. MASSEY, Linear codes with complementary duals. A collection of contributions in honour of Jack van Lint. *Discrete Math.* 106/107 (1992), 337-342.
- [4] N. SENDRIER, Linear codes with complementary duals meet the Gilbert-Varshamov bound. *Discrete Math.* 285 (2004), 345-347.
- [5] W. WILLEMS, A note on self-dual group codes. *IEEE Trans. Inf. Theory* 48 (2002), 3107-3109.
- [6] X. YANG and J.L. MASSEY, The necessary and sufficient condition for a cyclic code to have a complementary dual. *Discrete Math.* 126 (1994), 391-393.