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Abstract. A b-set B in PG(2, q), the projective plane over the field of ¢ elements,
is called a (b, m)-blocking set if every line meets B in at least m points and some
line meets B in exactly m points. B is called a triple blocking set if m = 3. When
B contains a line for m = 3, it is known that b = |B| > 4q if ¢ is odd and that
b>4q—1if g is even. We show that there exist at least six (4q, 3)-blocking sets for
odd g > 7 and three (4q — 1, 3)-blocking sets for even ¢ > 8 which are projectively
inequivalent.

1 Introduction

A b-set B in PG(2,q) is called a (b, m)-blocking set if every line meets B in at
least m points and some line meets B in exactly m points. B is called a triple
blocking set if m = 3 [1]. When B contains a line for m = 3, it is known that
b= |B| >4qif q is odd and that b = |B| > 4¢ — 1 if ¢ is even [5].

Lemma 1 (Example 2.3 in [7]). Let By be the set of points on the lines [100],
[010], [001], [111] together with the points P(—1,1,1), P(1,—1,1). Then, By
forms a (4q — 1, 3)-blocking set if q is even and a (4q,3)-blocking set if q is odd,
where [abc] denotes the line {P(x,y,z) € PG(2,q) | ax + by + cz = 0}.

In this paper, we construct new (4q, 3)-blocking sets for odd ¢ and (4g—1, 3)-
blocking sets for even ¢ in PG(2, ¢). A line [ is called an i-line for B if |[BNl| = i.
We denote by b; the number of i-lines for a given blocking set B.

Theorem 2. For odd q > 5, let C be a conic in ¥ = PG(2,q). For any
three points Py, P>, P3 in C, let l; be the tangent of C through P; and l;; be
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the secant of C' through P; and Pj, and let P;; = [; N1l; for 1 < i < j < 3.
Take any two points P and @ from the three points Pia, Pes, P13, and let
B =CUl12UlesUlisU{P,Q}. Then, B is a (4q,3)-blocking set with spectrum
(b3, by, bs,b6) = (15,10,1,5) for g =5 and

(g +5)(g—2) % (¢—3)(g—4)
2 D 2

(b3, b4, b5, b6, bgr1) = ( .q—3,3) forq>T.

Proof. Let C = {P1,P5,...,P;11} be a conic in ¥ and let [ be a line. If
contains none of Pj, Py, P3, then [ meets l12 U lo3 U l13 at three points. Thus,
|lN B| > 3. If [ contains exactly one of Py, Py, P3, say P, | meets l12 Ulag Uly3
at two points. Then, [ is a secant or a tangent of C. If [ is a secant of C, [ meets
C at P’ and another point. So, [[NB| > 3. If [ is a tangent of C, [ is Iy, I3 or I3,
and [ contains at least one of the points P and Q. So, |l N B| > 3. If [ contains
two of P, P, and P, then [ is l12, lo3 or l13. Thus, B is a (4q, 3)-blocking set.
Without loss of generality, we may take P = Pj5 and () = Pjs. Assume q > 7.
The (¢+1)-lines for B are li2, l23, l13. So, bg+1 = 3. The 6-lines are the secants
through P or @ except (P, P») and (Q, P3). Hence bg = 2(‘1;21 —1) =¢q—3. For
q = 5, the above (¢ + 1)-lines are also 6-lines for B, and bg = 5. Now, assume
q > 5. The 5-lines are the secants of C' passing through none of Py, P, Ps
except the 6-lines. So, bs = (q+é_3) —bs = (¢—3)(qg—4)/2. The 4-lines are the
external lines of C' through P or @, the secants (P, P), (Q, P3), the tangents
at Py, Ps,...,P;r1 and (P,Q). Hence, by =q¢—1+2+(¢+1-3)+1=2q.
Finally, b3 = 62 — by — bs — bg — bg+1 = (¢ +5)(q¢ — 2)/2. O

Theorem 3. Under the conditions of Theorem 2 with ¢ > 7, take P = Pi3,
Q = P12 and a point Q" in lo with Q" € {Q, Pa,l13 N2}, and let £ = (P,Q’).
Then B' = (B\{Q}) U{Q'} is a (4q, 3)-blocking set with spectrum

(1) (b3,b4,b5,b6,bq11) = ((q+5)2(q72) ,2q, (q73)2(q74) ,q —3,3) if £ is a tangent,

(2) (b3, ba, bs, b, by, bgyr) = (UENI=2) og _ CTatIS  _ 61.3) if £ is a
secant,

(3) (b3, ba,bs,b6,bg41) = (%,Qq -3, ‘1277#‘“18,(] —4,3) if £ is an external
line.

Proof. Since ¢ is a tangent of C' if and only if Q' = P»3, we get the spectrum
(1) from Theorem 2 if ¢ is a tangent. As we have already seen in the proof
of Theorem 2, the tanget (@, P) and the secant (@, P3) are 4-lines, the other
(¢ —3)/2 secants through @ are 6-lines and the (¢ —1)/2 external lines through
@ are 4-lines for B. We denote by b; and b} the number of i-lines for B and B’,
respectively. Note that b;+1 = bgt1, for Q" € o \ { P, lisN 2}

If ¢ is a secant, then for B, the tangent (# l3) through @’ is a 4-line, the
secant £ is a 6-line, the secants (@', P1), (@', P3) are 3-lines, other (¢ — 7)/2
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secants on ) are 5-lines and the (¢ — 1)/2 external lines on @’ are 3-lines.
Hence, b =bs +2+ (¢—1)/2—2—(¢q—1)/2=10bs, by =bs —2—(¢—1)/2 —
1+2+(q—-1)/2=0bs—1,05 =bs+(q—3)/2+1—(¢q—T7)/2 = bs + 3,
bg=0bs —(q—3)/2—14+(¢q—T7)/2=1bs— 3, b, = 1.

If ¢ is an external line, then for B, the tangent (# l2) through @’ is a 4-
line, the secants (@', P1), (', Ps) are 3-lines, other (¢ — 5)/2 secants on Q' are
5-lines, the external line ¢ is a 4-line and the (¢ — 3)/2 external lines on Q' are
3-lines. Hence, by = b3+2+4(q—1)/2—2—(¢—3)/2=b3+1, b =bs—2—(¢—
1)/2—=142—-1+(q—3)/2 =bs—3, by = b5+ (¢—3)/2+1—(¢—5)/2+1 = b5 +3,
b =bs —(q—3)/2+ (¢ —5)/2="0bs — 1. O

We note that the construction of a (4¢, 3)-blocking set with spectrum (1) or
(3) in Theorem 3 is also valid for ¢ = 5, but not for the spectrum (2) since ¢ is
a secant if and only if Q" = l13 N1y when ¢ = 5. See Corollary 7.5 in [8] for the
next Lemma.

Lemma 4 ([8]). In PG(2,q) with ¢ > 4, there is a unique conic through a
5-arc.

We can get one more (4q,3)-blocking set in PG(2,q) from the set B in
Theorem 2 by two points exchange.

Theorem 5. Let ¢ = p > 7 with odd prime p # 3. Under the conditions
of Theorem 2, let C be the conic {P(1,a,a?) | a € F,} U {P(0,0,1)} and
take P = P(1,1,1), P, = P(0,0,1), P3 = P(1,0,0), P, = P(1,27},272),
P = P(1,2,22), S = <P1,P4> N (PQ,P5> and T = <P1,P5> N <P3,P4>. Then,
By = (B\{P4, Ps}) U{S,T} is a (4q,3)-blocking set, which is not projectively
equivalent to any blocking set in Theorems 2 and 3.

Proof. Note that Py # Ps if p # 3 and that S = P(1,2,2 +271), T = P(2 +
2712/1). Since P =1 Ni3 = P(1,271,0) and Q = I; NIy = P(0,1,2), the
lines (P, P,) and (Q, P3) are passing through P, and P, respectively. Let
B{ = B\{P4, P5}. Then, the 2-lines for By are (P, Py), (P, Ps), (P, P5) and
(Ps, Py). Hence, adding S = (P1, Py) N (P, P5) and T' = (P, Ps) N (Ps, Py) to
B{, By = By U{S,T} forms a (4¢, 3)-blocking set. It can be checked using
a computer that By has spectrum (bs, by, b5, b7,bg) = (28,18,6,2,3) for ¢ = 7,
(b3, b4, b5, b6, b7,b12) = (66,38,16,8,2,3) for ¢ = 11 and (b3, b, bs, bg, b14) =
(93,44,27,16,3) for ¢ = 13. Hence, B; is not projectively equivalent to any
blocking set in Theorems 2 and 3. Assume ¢ > 17 and suppose Bj contains a
conic C’. Since C' # ', it follows from Lemma 4 that C’ could contain at most
4 points from C, 6 points from l12 U l13 U lo3 and the other 4 points, totally
at most 14 points from Bj, a contradiction. Thus, By contains no conic for
q > 17. On the other hand, the blocking sets in Theorem 2 and 3 contain a
conic. Hence, the blocking set Bj is not projectively equivalent to any blocking
set in the previous theorems. 0
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Remark 6. (1) Assume ¢ =5 in Theorem 5. It is known that there exist two
inequivalent (20,3)-blocking sets (equivalently, (11,3)-arcs) in PG(2,5), see also
Table 12.5 in [8]. The (20,3)-blocking sets have spectrum

(a) (b3, ba,bs,b6) = (15,10,1,5) or
(b) (bs,ba,bs,bs) = (16,7,4,4).

There are four 6-lines ly2, li3, log and (S,T) for the blocking set By in Theorem
5 when ¢ = 5. So, By has spectrum (b). Hence, By is projectively equivalent to
the blocking set in Theorem 3 (3).

(2) When q =17, the line (P, S) in the proof of Theorem 5 is a secant of C. On
the other hand, when q is 13, (P,S) is an external line of C. Thus, the line
(P, S) could form a tangent, a secant or an external line of C up to q. That is
why we could not determine the spectrum of the (4q, 3)-blocking set in Theorem

5.

Next, we determine the spectrum of the arc By in Lemma 1 for odd ¢ to
find one more inequivalent arc.

Theorem 7. For odd q > 5, let B = 13 Uly Uls Uly U {Py, Py}, consist-
ing of the lines l; = [100], Il = [010], I3 = [001], Iy = [111] and the points
P, =P(-1,1,1), P, =P(1,—1,1). Then, B forms a (4q,3)-blocking set with
spectrum (b3, by, bs,bgr1) = (6¢ — 14,¢% — Tq + 17,29 — 6,4).

Proof. Note that no three of the lines l1,ls,l3,l4 are concurrent. Let Q =

{Qij = LNl |1 <i<j<A4),r = (Qua,Q23), r2 = (Q13,Q24) and r3 =
(Q12,Q34). Then, P and P, are equal to 7o N rs and r; N r3, respectively.

Hence, r3 = (P1, P») is a 4-line. Let [ be a line. [ meets U?Zl l; at two, three

or four points. When [l N (U?:1 ;)] = 2, lis r1, r2 or 3. So, | contains P
or P,. Thus, B is a (4¢,3)-blocking set. Now, the (¢ + 1)-lines for B are
li,...,l4, and bgy1 = 4. The 5-lines for B are the lines containing one of P,

P, but none of Q. Hence, as = 2(¢ + 1 — 4). The 3-lines for B are the lines
through one of two points @12, (34 containing no other point of Q, the lines
through one point (# Q12, @34) of Q containing none of { Py, P>}, and two more
lines r1,72. Thus, b3 = 2(¢+1—-3) +4(¢+1—4)+ 2 = 6g — 14. Finally,
b4:92—bq+1—b5—b3:q2—7q—|—17. O

Theorem 8. Under the conditions of Theorem 7, let Ps = r1 Nry. Take
P2, € 7"1\{P2,P3,Q14,Q23} and let B' = (B\{P2}) U {Pé} Then; B s a
(4q,3)-blocking set with spectrum (bs,by,bs,bs) = (15,10,1,5) for ¢ = 5 and
(b3, ba, bs, be, bgr1) = (6 — 15,¢% — Tq +20,2q — 9,1,4) for ¢ > 7.

Proof. Since the 3-line for B through P; is 71 only, B’ forms a (4q, 3)-blocking
set. The lines through P» for K except 1 = (P, Pj) are three 4-lines (P2, Q13),
(P2, Q24), (P1,P) and (g — 3) 5-lines. On the other hand, the lines through
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Pj for K other than r; are four 3-lines (Pj, Q;;) with Q;; € Q \ 71, one 5-line
(Pj, P1) and (g—5) 4-lines. Hence, by = bg+3—4, b = by—3+(¢—3)+4—(¢—5),
bt =bs—(¢q—3)—1+4+(¢g—5),b5 =1 (or by =1+4 =5 for ¢ =5), where b;
and b are the number of i-lines for B and B’, respectively. Now, our assertion
follows from Theorem 7. 0

An n-set in PG(2, ¢) at most r points of which are collinear is called an (n, r)-
arc in PG(2, q), see [1], [2], [3]. For an n-set K and its complement B = ¥\ K
in ¥ =PG(2,q), K is an (n,r)-arc if and only if B is a (#2 —n, 81 — r)-blocking
set. From the above theorems, we get the following.

Corollary 9. There exist at least siz projectively inequivalent (¢*>—3q+1,q—2)-
arcs in PG(2,q) for odd ¢ > 7.

Finally, we consider the case ¢ is even. Assume ¢ > 4. Then, it is known
that a (b, 3)-blocking set B containing a line satisfies b > 4q — 1 [6]. The set By
for even ¢ in Lemma 1 is such a (4¢q — 1, 3)-blocking set with spectrum

(b3, ba, bs, bg+1) = (6 — 9,¢° — 6 + 8,9 — 2,4).

When ¢ = 4, the complement of a (4g—1, 3)-blocking set is a 6-arc (a hyperoval).
So, assume g > 8. We can construct two more (4g—1, 3)-blocking sets as follows.

Theorem 10. For even q > 8, let C' be a conic in ¥ = PG(2,q) with nucleus

N. For any three points Py, Pa, Py in CU{N} with P, P, € C, letl;; = (P;, P})

for1 <i<j<3. Then,

(1) B = CUl12Ula3Ul13 is a (4g—1, 3)-blocking set with spectrum (bs, bs, bg11) =
(leQle=l) (a=l9=2) '3) with | Aut(B)| = 2(g — 1) if Py = N,

(2) B=CUliaUlasUlizU{N} is a (4g — 1,3)-blocking set with spectrum
(b3, b5, by 1) = (O (D2 3y with | Aut(B)| = 6 if Py # N.

The (4¢q — 1, 3)-blocking sets in Theorem 10 were first found for ¢ = 8, see
[4].

Corollary 11. There exist at least three projectively inequivalent (4q — 1,3)-
blocking sets (equivalently, (¢*> —3q+2,q — 2)-arcs) in PG(2,q) for even q > 8.
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