
Fifteenth International Workshop on Algebraic and Combinatorial Coding Theory
June 18-24, 2016, Albena, Bulgaria pp. 96–101

Construction of some triple blocking sets in
PG(2, q) 1

Eun Ju Cheon cenju1000@hotmail.com

Department of Mathematics and RINS, Gyeongsang National University, Korea

Tatsuya Maruta maruta@mi.s.osakafu-u.ac.jp

Department of Mathematics and Information Sciences, Osaka Prefecture University

Tsukasa Okazaki chicken15154649@yahoo.co.jp

Department of Mathematics and Information Sciences, Osaka Prefecture University

Abstract. A b-set B in PG(2, q), the projective plane over the field of q elements,
is called a (b,m)-blocking set if every line meets B in at least m points and some
line meets B in exactly m points. B is called a triple blocking set if m = 3. When
B contains a line for m = 3, it is known that b = |B| ≥ 4q if q is odd and that
b ≥ 4q− 1 if q is even. We show that there exist at least six (4q, 3)-blocking sets for
odd q ≥ 7 and three (4q − 1, 3)-blocking sets for even q ≥ 8 which are projectively
inequivalent.

1 Introduction

A b-set B in PG(2, q) is called a (b,m)-blocking set if every line meets B in at
least m points and some line meets B in exactly m points. B is called a triple
blocking set if m = 3 [1]. When B contains a line for m = 3, it is known that
b = |B| ≥ 4q if q is odd and that b = |B| ≥ 4q − 1 if q is even [5].

Lemma 1 (Example 2.3 in [7]). Let B0 be the set of points on the lines [100],
[010], [001], [111] together with the points P(−1, 1, 1), P(1,−1, 1). Then, B0

forms a (4q− 1, 3)-blocking set if q is even and a (4q, 3)-blocking set if q is odd,
where [abc] denotes the line {P(x, y, z) ∈ PG(2, q) | ax+ by + cz = 0}.

In this paper, we construct new (4q, 3)-blocking sets for odd q and (4q−1, 3)-
blocking sets for even q in PG(2, q). A line l is called an i-line for B if |B∩l| = i.
We denote by bi the number of i-lines for a given blocking set B.

Theorem 2. For odd q ≥ 5, let C be a conic in Σ = PG(2, q). For any
three points P1, P2, P3 in C, let li be the tangent of C through Pi and lij be
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the secant of C through Pi and Pj, and let Pij = li ∩ lj for 1 ≤ i ≤ j ≤ 3.
Take any two points P and Q from the three points P12, P23, P13, and let
B = C ∪ l12 ∪ l23 ∪ l13 ∪{P,Q}. Then, B is a (4q, 3)-blocking set with spectrum
(b3, b4, b5, b6) = (15, 10, 1, 5) for q = 5 and

(b3, b4, b5, b6, bq+1) = (
(q + 5)(q − 2)

2
, 2q,

(q − 3)(q − 4)

2
, q − 3, 3) for q ≥ 7.

Proof. Let C = {P1, P2, . . . , Pq+1} be a conic in Σ and let l be a line. If l
contains none of P1, P2, P3, then l meets l12 ∪ l23 ∪ l13 at three points. Thus,
|l∩B| ≥ 3. If l contains exactly one of P1, P2, P3, say P ′, l meets l12 ∪ l23 ∪ l13
at two points. Then, l is a secant or a tangent of C. If l is a secant of C, l meets
C at P ′ and another point. So, |l∩B| ≥ 3. If l is a tangent of C, l is l1, l2 or l3,
and l contains at least one of the points P and Q. So, |l ∩B| ≥ 3. If l contains
two of P1, P2 and P3, then l is l12, l23 or l13. Thus, B is a (4q, 3)-blocking set.
Without loss of generality, we may take P = P13 and Q = P12. Assume q ≥ 7.
The (q+1)-lines for B are l12, l23, l13. So, bq+1 = 3. The 6-lines are the secants

through P or Q except ⟨P, P2⟩ and ⟨Q,P3⟩. Hence b6 = 2( q−1
2 −1) = q−3. For

q = 5, the above (q + 1)-lines are also 6-lines for B, and b6 = 5. Now, assume
q ≥ 5. The 5-lines are the secants of C passing through none of P1, P2, P3

except the 6-lines. So, b5 =
(
q+1−3

2

)
− b6 = (q− 3)(q− 4)/2. The 4-lines are the

external lines of C through P or Q, the secants ⟨P, P2⟩, ⟨Q,P3⟩, the tangents
at P4, P5, . . . , Pq+1 and ⟨P,Q⟩. Hence, b4 = q − 1 + 2 + (q + 1 − 3) + 1 = 2q.
Finally, b3 = θ2 − b4 − b5 − b6 − bq+1 = (q + 5)(q − 2)/2.

Theorem 3. Under the conditions of Theorem 2 with q ≥ 7, take P = P13,
Q = P12 and a point Q′ in l2 with Q′ ̸∈ {Q,P2, l13 ∩ l2}, and let ℓ = ⟨P,Q′⟩.
Then B′ = (B\{Q}) ∪ {Q′} is a (4q, 3)-blocking set with spectrum

(1) (b3, b4, b5, b6, bq+1) = ( (q+5)(q−2)
2 , 2q, (q−3)(q−4)

2 , q − 3, 3) if ℓ is a tangent,

(2) (b3, b4, b5, b6, b7, bq+1) = ( (q+5)(q−2)
2 , 2q − 1, q

2−7q+18
2 , q − 6, 1, 3) if ℓ is a

secant,

(3) (b3, b4, b5, b6, bq+1) = ( q
2+3q−8

2 , 2q − 3, q
2−7q+18

2 , q − 4, 3) if ℓ is an external
line.

Proof. Since ℓ is a tangent of C if and only if Q′ = P23, we get the spectrum
(1) from Theorem 2 if ℓ is a tangent. As we have already seen in the proof
of Theorem 2, the tanget ⟨Q,P ⟩ and the secant ⟨Q,P3⟩ are 4-lines, the other
(q−3)/2 secants through Q are 6-lines and the (q−1)/2 external lines through
Q are 4-lines for B. We denote by bi and b′i the number of i-lines for B and B′,
respectively. Note that b′q+1 = bq+1, for Q

′ ∈ l2 \ {P2, l13 ∩ l2}.
If ℓ is a secant, then for B, the tangent ( ̸= l2) through Q′ is a 4-line, the

secant ℓ is a 6-line, the secants ⟨Q′, P1⟩, ⟨Q′, P3⟩ are 3-lines, other (q − 7)/2
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secants on Q′ are 5-lines and the (q − 1)/2 external lines on Q′ are 3-lines.
Hence, b′3 = b3 + 2 + (q − 1)/2− 2− (q − 1)/2 = b3, b

′
4 = b4 − 2− (q − 1)/2−

1 + 2 + (q − 1)/2 = b4 − 1, b′5 = b5 + (q − 3)/2 + 1 − (q − 7)/2 = b5 + 3,
b′6 = b6 − (q − 3)/2− 1 + (q − 7)/2 = b6 − 3, b′7 = 1.

If ℓ is an external line, then for B, the tangent ( ̸= l2) through Q′ is a 4-
line, the secants ⟨Q′, P1⟩, ⟨Q′, P3⟩ are 3-lines, other (q − 5)/2 secants on Q′ are
5-lines, the external line ℓ is a 4-line and the (q − 3)/2 external lines on Q′ are
3-lines. Hence, b′3 = b3+2+(q−1)/2−2− (q−3)/2 = b3+1, b′4 = b4−2− (q−
1)/2−1+2−1+(q−3)/2 = b4−3, b′5 = b5+(q−3)/2+1−(q−5)/2+1 = b5+3,
b′6 = b6 − (q − 3)/2 + (q − 5)/2 = b6 − 1.

We note that the construction of a (4q, 3)-blocking set with spectrum (1) or
(3) in Theorem 3 is also valid for q = 5, but not for the spectrum (2) since ℓ is
a secant if and only if Q′ = l13 ∩ l2 when q = 5. See Corollary 7.5 in [8] for the
next Lemma.

Lemma 4 ([8]). In PG(2, q) with q ≥ 4, there is a unique conic through a
5-arc.

We can get one more (4q, 3)-blocking set in PG(2, q) from the set B in
Theorem 2 by two points exchange.

Theorem 5. Let q = ph ≥ 7 with odd prime p ̸= 3. Under the conditions
of Theorem 2, let C be the conic {P(1, a, a2) | a ∈ Fq} ∪ {P(0, 0, 1)} and
take P1 = P(1, 1, 1), P2 = P(0, 0, 1), P3 = P(1, 0, 0), P4 = P(1, 2−1, 2−2),
P5 = P(1, 2, 22), S = ⟨P1, P4⟩ ∩ ⟨P2, P5⟩ and T = ⟨P1, P5⟩ ∩ ⟨P3, P4⟩. Then,
B1 = (B\{P4, P5}) ∪ {S, T} is a (4q, 3)-blocking set, which is not projectively
equivalent to any blocking set in Theorems 2 and 3.

Proof. Note that P4 ̸= P5 if p ̸= 3 and that S = P(1, 2, 2 + 2−1), T = P(2 +
2−1, 2, 1). Since P = l1 ∩ l3 = P(1, 2−1, 0) and Q = l1 ∩ l2 = P(0, 1, 2), the
lines ⟨P, P2⟩ and ⟨Q,P3⟩ are passing through P4 and P5, respectively. Let
B−

1 = B\{P4, P5}. Then, the 2-lines for B−
1 are ⟨P1, P4⟩, ⟨P1, P5⟩, ⟨P2, P5⟩ and

⟨P3, P4⟩. Hence, adding S = ⟨P1, P4⟩ ∩ ⟨P2, P5⟩ and T = ⟨P1, P5⟩ ∩ ⟨P3, P4⟩ to
B−

1 , B1 = B−
1 ∪ {S, T} forms a (4q, 3)-blocking set. It can be checked using

a computer that B1 has spectrum (b3, b4, b5, b7, b8) = (28, 18, 6, 2, 3) for q = 7,
(b3, b4, b5, b6, b7, b12) = (66, 38, 16, 8, 2, 3) for q = 11 and (b3, b4, b5, b6, b14) =
(93, 44, 27, 16, 3) for q = 13. Hence, B1 is not projectively equivalent to any
blocking set in Theorems 2 and 3. Assume q ≥ 17 and suppose B1 contains a
conic C ′. Since C ̸= C ′, it follows from Lemma 4 that C ′ could contain at most
4 points from C, 6 points from l12 ∪ l13 ∪ l23 and the other 4 points, totally
at most 14 points from B1, a contradiction. Thus, B1 contains no conic for
q ≥ 17. On the other hand, the blocking sets in Theorem 2 and 3 contain a
conic. Hence, the blocking set B1 is not projectively equivalent to any blocking
set in the previous theorems.
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Remark 6. (1) Assume q = 5 in Theorem 5. It is known that there exist two
inequivalent (20,3)-blocking sets (equivalently, (11,3)-arcs) in PG(2, 5), see also
Table 12.5 in [8]. The (20,3)-blocking sets have spectrum

(a) (b3, b4, b5, b6) = (15, 10, 1, 5) or

(b) (b3, b4, b5, b6) = (16, 7, 4, 4).

There are four 6-lines l12, l13, l23 and ⟨S, T ⟩ for the blocking set B1 in Theorem
5 when q = 5. So, B1 has spectrum (b). Hence, B1 is projectively equivalent to
the blocking set in Theorem 3 (3).
(2) When q = 7, the line ⟨P, S⟩ in the proof of Theorem 5 is a secant of C. On
the other hand, when q is 13, ⟨P, S⟩ is an external line of C. Thus, the line
⟨P, S⟩ could form a tangent, a secant or an external line of C up to q. That is
why we could not determine the spectrum of the (4q, 3)-blocking set in Theorem
5.

Next, we determine the spectrum of the arc B0 in Lemma 1 for odd q to
find one more inequivalent arc.

Theorem 7. For odd q ≥ 5, let B = l1 ∪ l2 ∪ l3 ∪ l4 ∪ {P1, P2}, consist-
ing of the lines l1 = [100], l2 = [010], l3 = [001], l4 = [111] and the points
P1 = P(−1, 1, 1), P2 = P(1,−1, 1). Then, B forms a (4q, 3)-blocking set with
spectrum (b3, b4, b5, bq+1) = (6q − 14, q2 − 7q + 17, 2q − 6, 4).

Proof. Note that no three of the lines l1, l2, l3, l4 are concurrent. Let Q =
{Qij = li ∩ lj | 1 ≤ i < j ≤ 4}, r1 = ⟨Q14, Q23⟩, r2 = ⟨Q13, Q24⟩ and r3 =
⟨Q12, Q34⟩. Then, P1 and P2 are equal to r2 ∩ r3 and r1 ∩ r3, respectively.

Hence, r3 = ⟨P1, P2⟩ is a 4-line. Let l be a line. l meets
∪4

i=1 li at two, three

or four points. When |l ∩ (
∪4

i=1 li)| = 2, l is r1, r2 or r3. So, l contains P1

or P2. Thus, B is a (4q, 3)-blocking set. Now, the (q + 1)-lines for B are
l1, . . . , l4, and bq+1 = 4. The 5-lines for B are the lines containing one of P1,
P2 but none of Q. Hence, a5 = 2(q + 1 − 4). The 3-lines for B are the lines
through one of two points Q12, Q34 containing no other point of Q, the lines
through one point ( ̸= Q12, Q34) of Q containing none of {P1, P2}, and two more
lines r1, r2. Thus, b3 = 2(q + 1 − 3) + 4(q + 1 − 4) + 2 = 6q − 14. Finally,
b4 = θ2 − bq+1 − b5 − b3 = q2 − 7q + 17.

Theorem 8. Under the conditions of Theorem 7, let P3 = r1 ∩ r2. Take
P ′
2 ∈ r1\{P2, P3, Q14, Q23} and let B′ = (B\{P2}) ∪ {P ′

2}. Then, B′ is a
(4q, 3)-blocking set with spectrum (b3, b4, b5, b6) = (15, 10, 1, 5) for q = 5 and
(b3, b4, b5, b6, bq+1) = (6q − 15, q2 − 7q + 20, 2q − 9, 1, 4) for q ≥ 7.

Proof. Since the 3-line for B through P2 is r1 only, B′ forms a (4q, 3)-blocking
set. The lines through P2 for K except r1 = ⟨P2, P

′
2⟩ are three 4-lines ⟨P2, Q13⟩,

⟨P2, Q24⟩, ⟨P1, P2⟩ and (q − 3) 5-lines. On the other hand, the lines through
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P ′
2 for K other than r1 are four 3-lines ⟨P ′

2, Qij⟩ with Qij ∈ Q \ r1, one 5-line
⟨P ′

2, P1⟩ and (q−5) 4-lines. Hence, b′3 = b3+3−4, b′4 = b4−3+(q−3)+4−(q−5),
b′5 = b5 − (q − 3) − 1 + (q − 5), b′6 = 1 (or b′6 = 1 + 4 = 5 for q = 5), where bi
and b′i are the number of i-lines for B and B′, respectively. Now, our assertion
follows from Theorem 7.

An n-set in PG(2, q) at most r points of which are collinear is called an (n, r)-
arc in PG(2, q), see [1], [2], [3]. For an n-set K and its complement B = Σ\K
in Σ =PG(2, q), K is an (n, r)-arc if and only if B is a (θ2 − n, θ1 − r)-blocking
set. From the above theorems, we get the following.

Corollary 9. There exist at least six projectively inequivalent (q2−3q+1, q−2)-
arcs in PG(2, q) for odd q ≥ 7.

Finally, we consider the case q is even. Assume q ≥ 4. Then, it is known
that a (b, 3)-blocking set B containing a line satisfies b ≥ 4q− 1 [6]. The set B0

for even q in Lemma 1 is such a (4q − 1, 3)-blocking set with spectrum

(b3, b4, b5, bq+1) = (6q − 9, q2 − 6q + 8, q − 2, 4).

When q = 4, the complement of a (4q−1, 3)-blocking set is a 6-arc (a hyperoval).
So, assume q ≥ 8. We can construct two more (4q−1, 3)-blocking sets as follows.

Theorem 10. For even q ≥ 8, let C be a conic in Σ = PG(2, q) with nucleus
N . For any three points P1, P2, P3 in C∪{N} with P1, P2 ∈ C, let lij = ⟨Pi, Pj⟩
for 1 ≤ i < j ≤ 3. Then,

(1) B = C∪l12∪l23∪l13 is a (4q−1, 3)-blocking set with spectrum (b3, b5, bq+1) =

( (q+6)(q−1)
2 , (q−1)(q−2)

2 , 3) with |Aut(B)| = 2(q − 1) if P3 = N ,

(2) B = C ∪ l12 ∪ l23 ∪ l13 ∪ {N} is a (4q − 1, 3)-blocking set with spectrum

(b3, b5, bq+1) = ( (q+6)(q−1)
2 , (q−1)(q−2)

2 , 3) with |Aut(B)| = 6 if P3 ̸= N .

The (4q − 1, 3)-blocking sets in Theorem 10 were first found for q = 8, see
[4].

Corollary 11. There exist at least three projectively inequivalent (4q − 1, 3)-
blocking sets (equivalently, (q2 − 3q+2, q− 2)-arcs) in PG(2, q) for even q ≥ 8.
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