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Abstract. We prove the nonexistence of binary orthogonal arrays of parameters
(length, cardinality, strength) = (9, 6.24, 4), (10, 6.25, 5), (10, 7.24, 4), (11, 7.25, 5),
(11, 7.24, 4) and (12, 7.25, 5), resolving the first cases where the existence was unde-
cided so far.

1 Introduction

Let H(n, 2) be the binary Hamming space of dimension n with Hamming dis-
tance. An orthogonal array (OA) of strength τ and index λ in H(n, 2) (or
binary orthogonal array, BOA), consists of the rows of an M ×n matrix C with
the property that every M × τ submatrix of C contains all ordered τ -tuples of
H(τ, 2), each one exactly λ = M/2τ times as rows.

Let C ⊂ H(n, 2) be an (n,M, τ) BOA. The distance distribution of C with
respect to c ∈ H(n, 2) if the (n+1)-tuple w = w(c) = (w0(c), w1(c), . . . , wn(c)),
where wi(c) = |{x ∈ C|d(x, c) = i}|, i = 0, . . . , n. All feasible distance distribu-
tions of BOA of parameters (n,M, τ) can be computed effectively for relatively
small n and τ as shown in [1]. Indeed, every distance distribution of C satisfies
the system

n∑

i=0

wi(c)
(

1− 2i

n

)k

= bk|C|, k = 0, 1, . . . , τ, (1)

where bk = 1
2n

∑n
d=0

(
n
d

)(
1 − 2d

n

)k and, in particular, bk = 0 for k odd. The
number bk is in fact the first coefficient in the expansion of the polynomial tk
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in terms of (binary) Krawtchouk polynomials (see [3, 5, 6]).
Let n, M and τ ≤ n be fixed. We denote by P (n,M, τ) the set of all possible

distance distributions of a (n,M, τ) BOA with respect to internal point c (in
the beginning – all admissible solutions of the system (1) with w0(c) ≥ 1) and
by Q(n,M, τ) the set of all possible distance distributions of a (n,M, τ) BOA
with respect to external point (in the beginning – all admissible solutions of the
system (1) with w0(c) = 0). Denote also W (n,M, τ) = P (n,M, τ)∪Q(n,M, τ).

We propose an algorithm which works on the sets P (n,M, τ), Q(n,M, τ)
and W (n,M, τ) utilizing connections between related BOAs. During the im-
plementation of our algorithm these sets are changed (reduced) until possible.

In Section 2 we prove several assertions which connect the distance distribu-
tions of arrays under consideration and their relatives. This allows us to collect
rules for removing distance distributions from the sets P (n,M, τ), Q(n,M, τ)
and W (n,M, τ). The logic of our algorithm and the new nonexistence results
are described in Section 3.

Algorithms for dealing with distance distributions were proposed earlier in
[1] and [2] but in these papers the set P (n,M, τ) was only examined. Moreover,
two seemingly crucial observations (Theorem 1 together with Corollary 2 and
Theorem 11 together with Corollary 11) are new. Also, the complete versions
(for the set W (n,M, τ)) of the remaining assertions are new.

2 Relations between distance distributions of (n,M, τ)
BOA and its derived BOAs

First we will prove the following statement.

Theorem 1. If the distance distribution w = (w0, w1, . . . , wn) belongs to the set
W (n,M, τ), then the distance distribution w = (wn, wn−1, . . . , w0) also belongs
to W (n,M, τ).

Proof. Let C ⊂ H(n, 2) be a BOA of parameters (n,M, τ) and C is the array
which is obtained from C by the permutation (0 → 1, 1 → 0) in the whole
C. Since the distances inside C are preserved by this transformation, C is
again (n,M, τ) BOA. On the other hand, distance i from external for C point
to a point of C correspond to distance n − i to the transformed point of C.
This means that if w = (w0, w1, . . . , wn) is the distance distribution of C with
respect to some point c ∈ H(n, 2) (internal or external for C), then the distance
distribution of C with respect to the same point (which can become either
internal or external for C, depending on whether wn > 0 or wn = 0) is w =
(wn, wn−1, . . . , w0).

Corollary 2. The distance distribution w ∈ W (n,M, τ) is ruled out if w 6∈
W (n,M, τ).
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Corollary 2 is important in all stages of our algorithm since it requires the
non-symmetric distance distributions to be paired off and infeasibility of one
element of the pair immediately implies infeasibility for the other.

We proceed with analyzing relations between the BOA C and BOAs C ′ of
parameters (n − 1,M, τ) which are obtained from C by deletion of one of its
columns. Of course, the set W (n− 1, M, τ) of possible distance distributions of
C ′ is sieved by Corollary 2 as well.

It is convenient to fix the removing of the first column of C. Let the distance
distribution of C with respect to c = 0 ∈ H(n, 2) be w ∈ W (n, M, τ) and
the distance distribution of C with respect to c′ = 0 ∈ H(n − 1, 2) be w′ =
(w′0, w

′
1, . . . , w

′
n−1) ∈ W (n− 1,M, τ).

For every i ∈ {0, 1, . . . , n} the matrix which consists of the rows of C of
weight i is called i-block. It follows from the above notations that the cardinality
of the i-block is wi. Next we denote by xi (yi, respectively) the number of the
ones (zeros, respectively) in the intersection of the first column of C and the
rows of the i-block.

Theorem 3. The numbers xi and yi, i = 0, 1, . . . , n, satisfy the following
system of linear equations

∣∣∣∣∣∣∣∣

xi + yi = wi, i = 1, 2, . . . , n− 1
xi+1 + yi = w′i, i = 0, 1, . . . , n− 1
y0 = w0, xn = wn

xi, yi ∈ Z, xi ≥ 0, yi ≥ 0, i = 0, 1, . . . , n

. (2)

Remark 4. Theorem 3 was firstly proved and used in 2013 by Boyvalenkov-
Kulina [1] for w ∈ P (n,M, τ).

Corollary 5. The distance distribution w ∈ W (n,M, τ) is ruled out if no
system (2) obtained when w′ runs W (n− 1,M, τ) has a solution.

Corollary 5 rules out some distance distributions w but it mainly serves to
produce feasible pairs (w, w′) which will be investigated further.

Our next step is based on the following property of BOAs: if we take the
rows of C with first coordinate 0 (1, respectively) and remove that first coordi-
nate then we obtain a BOA C0 (C1, respectively) of parameters (n−1, M/2, τ−
1). At this stage the BOAs C0 and C1 have the same sets of admissible distance
distributions – all these which have passed the sieves of Corollaries 2 and 5 for
the set W (n− 1,M/2, τ − 1).

We continue with relations between the BOAs C, C ′, C0 and C1 using the
numbers xi and yi, i = 0, 1, . . . , n.

Theorem 6. The distance distribution of the (n− 1,M/2, τ − 1) BOA C0 with
respect to c′ is y = (y0, y1, . . . , yn−1), i.e. y ∈ W (n− 1,M/2, τ − 1).
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More precisely, we have two possibilities in Theorem 6 – if y0 ≥ 1, then
c′ ∈ C0 and therefore y ∈ P (n− 1,M/2, τ − 1) (this is Theorem 1a) in [2]), or
y0 = 0 when c′ 6∈ C0 and therefore y ∈ Q(n− 1,M/2, τ − 1).

Corollary 7. The pair (w, w′) is ruled out if y 6∈ W (n − 1,M/2, τ − 1) or if
y = (yn−1, yn−2, . . . , y0) 6∈ W (n− 1,M/2, τ − 1).

Theorem 8. The distance distribution of the (n− 1,M/2, τ − 1) BOA C1 with
respect to c′ is x = (x1, x2, . . . , xn), i.e. x ∈ W (n− 1,M/2, τ − 1).

Similarly to above, we have two possibilities in Theorem 8 – if x1 ≥ 1, then
c′ ∈ C1 and therefore x ∈ P (n− 1, M/2, τ − 1) (this is Theorem 2a) in [2]), or
x1 = 0 when c′ 6∈ C1 and therefore x ∈ Q(n− 1,M/2, τ − 1).

Corollary 9. The pair (w, w′) is ruled out if x 6∈ W (n − 1,M/2, τ − 1) or if
x = (xn, xn−1, . . . , x1) 6∈ W (n− 1,M/2, τ − 1).

In our next step we consider the effect of the permutation (0 → 1, 1 → 0) in
the first column of C. This transformation does not change the distances from
C and thus we obtain a BOA C1,0 of parameters (n,M, τ) again.

Theorem 10. If the distance distribution of C with respect to c = 0 ∈ H(n, 2)
is w = (w0, w1, . . . , wn−1, wn) = (y0, x1 + y1, . . . , xn−1 + yn−1, xn), then the
distance distribution of C1,0 with respect to c is ŵ = (x1, x2 + y0, . . . , xn +
yn−2, yn−1), i.e. ŵ ∈ W (n,M, τ).

Proof. There are xi points in C1,0 (coming from C1) at distance i − 1 from
c. Analogously, there are yi points in C1,0 (coming from C0) at distance i + 1
from c. This means that the number of the points of C1,0 at distance 0 from
c is x1, the number of the points of C1,0 at distance i, 1 ≤ i ≤ n − 1, from
c is yi−1 + xi+1, and, finally, the number of the points of C1,0 at distance n
from c is yn−1. Therefore the distance distribution of C1,0 with respect to c is
ŵ = (x1, x2 + y0, . . . , xn + yn−2, yn−1).

Corollary 11. The pair (w, w′) is ruled out if ŵ 6∈ W (n,M, τ) or if ŵ 6∈
W (n,M, τ).

Corollary 12. The distance distribution w is ruled out if all possible pairs
(w,w′), where w′ ∈ W (n− 1,M, τ), are ruled out.

Otherwise, we proceed with the remaining pairs as follows. Let

(x(j)
0 = 0, x

(j)
1 , . . . , x(j)

n ; y(j)
0 , y

(j)
1 , . . . , y

(j)
n−1, y

(j)
n = 0), j = 1, . . . , s, (3)

are all solutions coming from Theorem 3 when w′ runs W (n − 1,M, τ) which
have passed the sieves of Corollaries 7, 9 and 11. We now free the cutting and
thus consider all possible n cuts of columns of C. These cuts produce pairs
(w,w′) (where w is fixed) and corresponding solutions (3). Let the solutions
(3) appear with multiplicities k1, k2, . . . , ks, respectively.
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Theorem 13. [1] The nonnegative integers k1, k2, . . . , ks satisfy the system
∣∣∣∣∣∣∣∣∣∣∣∣

k1 +k2 + · · · +ks = n

k1x
(1)
1 +k2x

(2)
1 + · · · +ksx

(s)
1 = w1

k1x
(1)
2 +k2x

(2)
2 + · · · +ksx

(s)
2 = 2w2

. . .

k1x
(1)
n +k2x

(2)
n + · · · +ksx

(s)
n = nwn

. (4)

Proof. This follows for counting in two ways the number of the ones in the
i-block of C. For fixed i ∈ {1, 2, . . . , n}, this number is obviously iwi, and, on
the other hand, it is equal to the sum k1x

(1)
i + k2x

(2)
i + · · ·+ ksx

(s)
i .

Corollary 14. The distance distribution w is ruled out if the system (4) does
not have solutions.

Corollary 15. Let j ∈ {1, 2, . . . , s} be such that all solutions of the system (4)
have kj = 0. Then the pair (w, w′), which corresponds to j, is ruled out.

3 Applications of the algorithm and new nonexis-
tence results

We organize the results from the previous section to work together as follows.
All BOAs (in fact, their current sets of feasible distance distributions P , Q

and W ) of interest for the targeted BOA C = (n,M, τ) are collected in a table
starting with first row

(τ, M, τ) (τ + 1,M, τ) (τ + 2,M, τ) . . . C = (n,M, τ).

The next row consist of the derived BOAs

(τ − 1,M/2, τ − 1) (τ, M/2, τ − 1) (τ + 1,M/2, τ − 1) . . . (n− 1, M/2, τ − 1)

and so on until it makes sense. We apply Corollaries 5, 12 and 14 in every row
separately from left to right to reduce the sets P , Q and W . Of course, this
process is fueled with information from the columns (starting from the bottom
end) according to Corollaries 7, 9, 11 and 15. Every nonsymmetric distance
distribution w which is ruled out, forces its mirror image w to be ruled out
according to Corollary 2.

The algorithm stops when no new rulings out are possible. An entry at the
right end, showing that some of the sets P , Q and W is empty means nonex-
istence of the corresponding BOA. Otherwise, we collect the reduced sets for
further analysis and classification results (in some cases, possibly, uniqueness).

For a putative (9, 96, 4) BOA our algorithm ends with empty set W (9, 96, 4).
Moreover, since (n,N, 2k) and (n + 1, 2N, 2k + 1) BOAs coexist [7] (see also [4,
Theorem 2.24]), we obtain the following nonexistence result.
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Theorem 16. There exist no binary orthogonal arrays of parameters (9, 96, 4)
and (10, 192, 5).

Next application ends with empty W (10, 112, 4) and W (11, 112, 4).

Theorem 17. There exist no binary orthogonal arrays of parameters (10, 112, 4),
(11, 112, 4), (11, 224, 5) and (12, 224, 5).

The new nonexistence results give improvements in six entries of Table 12.1
from [4]. We have 7 ≤ L(n, τ) ≤ 8 instead of 6 ≤ L(n, τ) ≤ 8 for the pairs
(n, τ) = (9, 4) and (10, 5) and also have L(n, τ) = 8 instead of 7 ≤ L(n, τ) ≤ 8
for the pairs (n, τ) = (10, 4), (11, 4), (11, 5) and (12, 5).

All calculations in this paper were performed by programs in Maple. All
results (in particular all possible distance distributions in the beginning) can
be seen at [8]. All programs are available upon request.
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