Universal Lower Bounds on Energy and LP-Extremal Polynomials for (4, 24)-Codes ¹

P. BOYVALENKOV peter@math.bas.bg Institute for Mathematics and Informatics, BAS, Sofia, Bulgaria and Southwestern University, Blagoevgrad, Bulgaria P. DRAGNEV dragnevp@ipfw.edu Department of Mathematical Sciences, IPFW, Fort Wayne, IN 46805, USA D. HARDIN doug.hardin@vanderbilt.edu Department of Mathematics, Vanderbilt University, Nashville, TN, 37xxx, USA E. SAFF edward.b.saff@vanderbilt.edu Department of Mathematics, Vanderbilt University, Nashville, TN, 37xxx, USA M. Stoyanova stoyanova@fmi.uni-sofia.bg Faculty of Mathematics and Informatics, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria

Abstract. In this paper we introduce the framework for improvement of the universal lower bounds (ULB) on potential energy using the Delsarte-Yudin linear programming approach for polynomials. As a model example we consider the case of 24 points on \mathbb{S}^3 .

1 Introduction

Let \mathbb{S}^{n-1} denote the unit sphere in \mathbb{R}^n . A finite set $C \subset \mathbb{S}^{n-1}$ is called a *spherical* code. Given an (extended real-valued) function $h(t) : [-1,1] \to [0,+\infty]$, the *h*-energy of a spherical code C is given by

$$E(C;h) := \sum_{x,y \in C, x \neq y} h(\langle x, y \rangle), \tag{1}$$

where $\langle x, y \rangle$ denotes the inner product of x and y. We are interested in lower bounds on energy of codes C with fixed cardinality |C| = N, referred to here as (n, N)-codes, $\mathcal{E}(n, N; h) := \inf\{E(C; h) : |C| = N, C \subset S^{n-1}\}.$

¹The research of the first author is supported, in part, by a Bulgarian NSF contract I01/0003; the research of the second author was supported, in part, by a Simons Foundation grant no. 282207; the research of the third and fourth authors was supported, in part, by the U. S. National Science Foundation under grant DMS-1516400; the research of the fifth author was supported, in part, by the Science Foundation of Sofia University under contract 57/2016.

Delsarte-Yudin's approach for finding such lower bounds is described as follows. Suppose the class $\mathcal{A}_{n,h}$ consists of all functions $f: [-1,1] \to \mathbb{R}$ s. t.

$$\mathcal{A}_{n,h} := \{ f(t) : f(t) = \sum_{k=0}^{\infty} f_k P_k^{(n)}(t) \le h(t), \quad f_k \ge 0, \quad k = 1, 2, \dots \}, \quad (2)$$

where $\{P_k^{(n)}(t)\}\$ are the Gegenbauer polynomials orthogonal on [-1,1] with respect to a measure $(1-t^2)^{(n-3)/2} dt$ and normalized so that $P_k^{(n)}(1) = 1$. Then

$$\mathcal{E}(n,N;h) \ge \max_{f \in \mathcal{A}_{n,h}} \left(f_0 N^2 - f(1)N \right).$$
(3)

Instead of solving the infinite linear program in the right-hand side of (3) one may restrict to a subspace $\Lambda \subset C([-1,1])$ (usually finite-dimensional), namely determining the quantity

$$\mathcal{W}(n,N,\Lambda;h) := \sup_{f \in \Lambda \cap A_{n,h}} N^2 (f_0 - f(1)/N).$$
(4)

In [1] we derived Universal Lower Bounds (ULB) on energy by explicitly solving (4) when $\Lambda = \mathcal{P}_m$, the polynomials of degree at most $m \leq \tau(N, n)$ for certain $\tau(N, n)$. The goal of this article is to introduce a framework for solving the linear program in some cases when $m > \tau(N, n)$ and obtain improved ULB.

2 1/N-Quadrature rules and lower bounds for energy on subspaces

Thereafter we consider only absolutely monotone potentials h, that is functions h(t), such that $h^{(k)}(t) \ge 0$, for every $t \in [-1, 1]$ and every integer $k \ge 0$. An important ingredient in [1] is the notion of a 1/N-quadrature over subspaces, which we briefly review. A finite sequence of ordered pairs $\{(\alpha_i, \rho_i)\}_{i=1}^k, -1 \le \alpha_1 < \alpha_2 < \cdots < \alpha_k < 1, \ \rho_i > 0$ for $i = 1, 2, \ldots, k$, is said to define a 1/N-quadrature rule over the subspace $\Lambda \subset C([-1, 1])$ if

$$f_0 := \gamma_n \int_{-1}^1 f(t)(1-t^2)^{(n-3)/2} dt = \frac{f(1)}{N} + \sum_{i=1}^k \rho_i f(\alpha_i), \ \gamma_n := \frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{n-1}{2}\right)}$$
(5)

is exact for all $f \in \Lambda$. The following theorem is found in [1].

Theorem 2.1 ([1], Theorems 2.3 and 2.6). Let $\{(\alpha_i, \rho_i)\}_{i=1}^k$ be a 1/N-quadrature rule that is exact for a subspace $\Lambda \subset C([-1, 1])$. If $f \in \Lambda \cap A_{n,h}$, then $\mathcal{E}(n, N; h) \geq N^2 \sum_{i=1}^k \rho_i f(\alpha_i)$ and

$$\mathcal{W}(n, N, \Lambda; h) \le N^2 \sum_{i=1}^k \rho_i h(\alpha_i).$$
(6)

If there is some $f \in \Lambda \cap A_{n,h}$ such that $f(\alpha_i) = h(\alpha_i)$ for i = 1, ..., k, then equality holds in (6), which yields the universal lower bound

$$\mathcal{E}(n,N;h) \ge N^2 \sum_{i=1}^{k} \rho_i h(\alpha_i).$$
(7)

Furthermore, in this case if $\Lambda' = \Lambda \bigoplus \text{span} \{P_j^{(n)} : j \in \mathcal{I}\}$ for some index set $\mathcal{I} \subset \mathbb{N}$ and the test functions (see [1, Theorems 2.6, 4.1])

$$Q_j^{(n)} := \frac{1}{N} + \sum_{i=1}^k \rho_i P_j^{(n)}(\alpha_i)$$
(8)

satisfy $Q_j^{(n)} \ge 0$ for $j \in \mathcal{I}$, then

$$\mathcal{W}(n, N, \Lambda'; h) = \mathcal{W}(n, N, \Lambda; h) = N^2 \sum_{i=1}^{k} \rho_i h(\alpha_i).$$
(9)

3 Levenshtein's framework and ULB

Of particular importance is the case when the subspace in Section 2 is \mathcal{P}_m . For this purpose we briefly introduce Levenshtein's framework (see [5]). First, we next recall two classical notions. The *Delsarte-Goethals-Seidel* lower bound $D(n, \tau)$ on the cardinality of spherical designs of strength τ is given by (cf. [4])

$$D(n,\tau) := \begin{cases} 2\binom{n+k-2}{n-1}, & \text{if } \tau = 2k-1, \\ \binom{n+k-1}{n-1} + \binom{n+k-2}{n-1}, & \text{if } \tau = 2k. \end{cases}$$
(10)

A close cousin, Levenshtein's upper bound L(n, s) on the cardinality of spherical codes with distinct inner products in [-1, s] (see [5]) can be described as follows. For $a, b \in \{0, 1\}$ and $i \ge 1$, let $t_i^{a,b}$ denote the greatest zero of the adjacent Jacobi polynomial $P_i^{(a+\frac{n-3}{2},b+\frac{n-3}{2})}(t)$. Levenshtein [5] proved that

$$L(n,s) = \begin{cases} L_{2k-1} := \binom{k+n-3}{k-1} \left[\frac{2k+n-3}{n-1} - \frac{P_{k-1}^{(n)}(s) - P_{k}^{(n)}(s)}{(1-s)P_{k}^{(n)}(s)} \right], & s \in \left[t_{k-1}^{1,1}, t_{k}^{1,0} \right] \\ L_{2k} := \binom{k+n-2}{k} \left[\frac{2k+n-1}{n-1} - \frac{(1+s)(P_{k}^{(n)}(s) - P_{k+1}^{(n)}(s))}{(1-s)(P_{k}^{(n)}(s) + P_{k+1}^{(n)}(s))} \right], & s \in \left[t_{k}^{1,0}, t_{k}^{1,1} \right]. \end{cases}$$

$$(11)$$

The connection between the Delsarte-Goethals-Seidel bound (10) and the Levenshtein bounds (11) is given by the equalities

$$L_{2k-2}(n, t_{k-1}^{1,1}) = L_{2k-1}(n, t_{k-1}^{1,1}) = D(n, 2k-1),$$

$$L_{2k-1}(n, t_{k}^{1,0}) = L_{2k}(n, t_{k}^{1,0}) = D(n, 2k).$$
(12)

Levenshtein's method for obtaining his bounds on the cardinality of maximal spherical codes utilizes orthogonal polynomials theory and Gauss-type quadrature rules that we now briefly review. The monotonicity of the bounds $D(n, \tau)$ with respect to τ (see (10)) implies that for every fixed dimension n and cardinality N there is unique $\tau := \tau(n, N)$ such that $N \in (D(n, \tau), D(n, \tau+1)]$.

For the so found τ define $k := \left\lceil \frac{\tau+1}{2} \right\rceil$ and let $\alpha_k = s$ be the unique solution of $N = L_{\tau}(n, s), s \in I_{\tau}$ (see (12)). Then as described by Levenshtein in [5, Section 5] there exist uniquely determined quadrature nodes and nonnegative weights (we consider odd τ)

$$-1 < \alpha_1 < \dots < \alpha_k < 1, \quad \rho_1, \dots, \rho_k \in \mathbb{R}^+, \quad i = 1, \dots, k$$
(13)

such that the Radau 1/N-quadrature holds

$$f_0 = \frac{f(1)}{N} + \sum_{i=1}^k \rho_i f(\alpha_i), \quad \text{for all } f \in \mathcal{P}_\tau.$$
(14)

The numbers α_i , i = 1..., k, are the roots of the equation $P_k(t)P_{k-1}(\alpha_k) - P_k(\alpha_k)P_{k-1}(t) = 0$, where $P_i(t) = P_i^{(\frac{n-1}{2},\frac{n-3}{2})}(t)$. In fact, $\{\alpha_i\}$ are roots of the Levenshtein's polynomials $f_{\tau}^{(n,\alpha_k)}(t)$ (see [5, Equations (5.81) and (5.82)]).

The first ingredient for Theorem 2.1, namely the 1/N-quadrature rule is given by (14). The optimal polynomials f(t) solving the linear program (4) are Hermite interpolants to the potential at the nodes $\{\alpha_i\}_{i=1}^k$, namely in the notation of Cohn-Kumar [3, p. 110] (over polynomial space \mathcal{P}_{τ})

$$f(t) = H(h; (t-s)f_{\tau}^{(n,s)}(t)),$$
(15)

where $f_{\tau}^{(n,s)}(t)$ are the Levenshtein's extremal polynomials [5].

Theorem 3.1 ([1], Theorem 3.1). Let n, N be fixed and h(t) be an absolutely monotone potential. Suppose that $\tau = \tau(n, N)$ is as in (??), and choose $k = \lfloor \frac{\tau+1}{2} \rfloor$. Associate the quadrature nodes and weights α_i and ρ_i , $i = 1, \ldots, k$, as in (14). Then

$$\mathcal{E}(n,N;h) \ge R_{\tau}(n,N;h) := N^2 \sum_{i=1}^k \rho_i h(\alpha_i).$$
(16)

Moreover, the polynomials f(t) defined by (15) provide the unique optimal solution of the linear program (4) for the subspace $\Lambda = \mathcal{P}_{\tau}$, and consequently

$$\mathcal{W}(n, N, \mathcal{P}_{\tau}; h) = R_{\tau}(n, N; h). \tag{17}$$

4 LP-extremal polynomials for (4,24)-codes and improved ULB

The (4, 24)-codes take prominence in the literature. In particular, the D_4 root system solving the kissing number problem [6], is suspected to be a maximal code, but is not universally optimal (see [2]). In this case the Levenshtein nodes are $\{-.817352..., -.257597..., .474950...\}$ and the weights are $\{0.138436..., 0.433999..., 0.385897...\}$. Two of the test functions associated with the 1/24-quadrature rule (14), Q_8 and Q_9 , are negative.

Table 1: Test functions for (4, 24)-codes, Levenshtein case Q_6 Q_7 Q_8 Q_9 Q_{10} Q_{11} Q_{12} 0.08570.1600-0.0239-0.02040.06420.03680.0598

Motivated by this we define $\Lambda := \operatorname{span}\{P_0^{(4)}, \ldots, P_5^{(4)}, P_8^{(4)}, P_9^{(4)}\}$. Our main result is a (4,24)-code version of Theorem 2.1.

Theorem 4.1. The collection of nodes and weights $\{(\alpha_i, \rho_i)\}_{i=1}^4$

$$\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} = \{-0.86029..., -.0.48984..., -0.19572, .0.478545...\}$$

$$\{\rho_1, \rho_2, \rho_3, \rho_4\} = \{0.09960..., 0.14653..., 0.33372..., 0.37847...\},$$
(18)

define a 1/N-quadrature rule that is exact for Λ . Moreover, there is a Hermitetype interpolant (see Figure 1) $H(t) = H(h; (t - \alpha_1)^2 \dots (t - \alpha_4)^2) \in \Lambda \cap A_{n,h},$ $H(\alpha_i) = h(\alpha_i), H'(\alpha_i) = h'(\alpha_i)$ for $i = 1, \dots, 4$ and subsequently the following universal lower bound (and an improvement of (16)) holds

$$\mathcal{E}(n,N;h) \ge N^2 \sum_{i=1}^{4} \rho_i h(\alpha_i).$$
(19)

Furthermore, the test functions $Q_j^{(n)}$ (see (8)) are non-negative for all j, and therefore H(t) is the optimal linear programming solution among all polynomials in $\mathcal{A}_{n,h}$.

The following lemma plays an important role in the proof of the positive definiteness of the Hermite-type interpolants described in Theorem 4.1.

Lemma 4.2. Suppose $T := \{t_1 \leq \cdots \leq t_k\} \subset [a, b]$ is a set of nodes and $B := \{g_1, \ldots, g_k\}$ is a linearly independent set of functions on [a, b] such that the matrix $g_B = (g_i(t_j))_{i,j=1}^k$ is invertible (repetition of points in the multiset

Figure 1: The (4,24)-code optimal interpolant - Coulomb potential

yields corresponding derivatives). Let $H(t, h; \operatorname{span}(B))$ denote the Hermite-type interpolant associated with T. Then

$$H(t,h;\mathrm{span}(B)) = \sum_{i=1}^{k} h[t_1,\ldots,t_i] H(t,(t-t_1)\cdots(t-t_{i-1});\mathrm{span}(B)), \quad (20)$$

where $h[t_1, \ldots, t_i]$ are the divided differences of h.

References

- P. Boyvalenkov, P. Dragnev, D. Hardin, E. Saff, M. Stoyanova. Universal lower bounds for potential energy of spherical codes. Constr. Approx. (2016).
- [2] H. Cohn, J. Conway, N. Elkies, A. Kumar, The D_4 root system is not universally optimal, *Experiment. Math.* **16**, 313–320, (2007).
- [3] H. Cohn, A. Kumar, Universally optimal distribution of points on spheres, J. Amer. Math. Soc. 20, 99–148, (2006).
- [4] P. Delsarte, J.-M. Goethals, J. J. Seidel, Spherical codes and designs, Geom. Dedicata 6, 363–388, (1977).
- [5] V. I. Levenshtein, Universal bounds for codes and designs, Handbook of Coding Theory, V. S. Pless and W. C. Huffman, Eds., Elsevier, Amsterdam, Ch. 6, 499–648, (1998).
- [6] O. Musin, The kissing number in four dimensions. Ann. of Math., 168, 1–32, (2008).