
Fifteenth International Workshop on Algebraic and Combinatorial Coding Theory
June 18-24, 2016, Albena, Bulgaria pp. 66–71

Colength of ∗-Polynomial Identities
of Simple ∗-Algebras

Silvia Boumova 1 silvi@math.bas.bg

USEA “Lyuben Karavelov ”, 175 Suhodolska Str., 1373 Sofia, Bulgaria and

Institute of Mathematics and Informatics, Acad. G. Bonchev Str., Bl. 8, 1113 Sofia,

Bulgaria

Abstract. We compute the sequence of colengths in the cocharacters of the ∗-
polynomial identities of the ∗-simple algebra M2(F )⊕M2(F )op, char(F ) = 0.

1 Introduction

Let A be an algebra over a field F . A function ∗ : A → A is said to be
an involution if ∗ is an automorphism of the additive group of A such that
(ab)∗ = b∗a∗ and (a∗)∗ = a for all a, b ∈ A. An example of such a map is the
transpose in the algebra Mn(F ) of n× n matrices over the field F .

In particular in the case of a unitary algebra (A, ∗) with involution ∗, there
are two possibilities: the restriction of ∗ on F is the identical map (is called the
involution of the first kind), otherwise ∗ is referred to be an involution of the
second type. In the theory of algebras with polynomial identities one tries to
take into account the existence of the additional structure in the algebra. In
particular, for algebras with involution we consider the so called ∗-polynomial
identities. In this case usually one studies algebras with involution of the first
kind only.

The algebra (A, ∗) is said to be ∗-simple if A2 6= 0 and it has no nontrivial
∗-invariant ideals.

The opposite algebra of A, denoted by Aop, is the algebra that has the same
elements as A, the same addition as A, and multiplication given by a ◦ b = ba,
where ba is a product in A. It is easy to check that (Aop)op = A, A ∼= B if and
only if Aop ∼= Bop. In this case the algebra A⊕Aop has the exchange involution
defined by (a, b)∗ = (b, a).

The description of ∗-simple algebras is given in [8, Proposition 2.13.24].

Theorem 1.1 Let A be a ∗-simple finite dimensional associative algebra over
an algebraically closed field. Then either A is simple as an algebra or A is of
the form A = B ⊕Bop, where B is a simple algebra.
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Over an algebraically closed field F the ∗-simple finite dimension algebras
are: (Mn(F ), t) with transpose, (Mn(F ), s) symplectic involution (for even n),
respectively and Mn(F )⊕Mn(F )op.

Drensky and Giambruno [4] have obtained the exact values of the cochar-
acters, codimensions and the Hilbert series of the polynomial identities of the
∗-simple algebras (M2(F ), t) and (M2(F ), s).

The subject of our study is the algebra M2(F ) ⊕M2(F )op with exchange
involution corresponding to the second case in Theorem 1.1. We obtain the
sequence of colengths of its ∗-identities in the case when F is of characteristic
zero.

2 Preliminaries

In this paper we consider the algebra M2 ⊕Mop
2 and its ∗ identities.

Let A be an algebra with involution over a field F of characteristic 0.
The free associative algebra with involution F 〈X, ∗〉 is the free associative
algebra on the set of free generators X ∪ X∗ where X = {x1, x2, . . . } and

X∗ = {x∗1, x∗2, . . . } and involution that extends the map xi
∗→ xi and x∗i

∗→ xi.
A polynomial f(X,X∗) ∈ K〈X, ∗〉 is a ∗-polynomial identity for the algebra
(A, ∗) if f(a1, . . . , an; a∗1, . . . , a

∗
n) = 0 for all ai ∈ A. We denote by T (A, ∗) the

ideal of all ∗-polynomial identities of (A, ∗). Instead, it is more convenient to
change the variables and to assume that yi = 1

2(xi + x∗i ), zi = 1
2(xi − x∗i ) are

the symmetric and skew variables, respectively. Then F 〈X, ∗〉 = F 〈Y,Z, ∗〉.
Let Yp = {y1, . . . , yp} be a set of symmetric variables yi ∈ F 〈Y,Z〉, and
Zq = {z1, . . . , zq} be a set of skew variables zi ∈ F 〈Y,Z〉.

Let us denote the sets of symmetric and skew elements of A by A+ = {a ∈
A | a∗ = a} and A+ = {a ∈ A | a∗ = −a}, respectively. Consequently,
f(Y, Z) ∈ T (A, ∗) if and only if the polynomial f(y1, . . . , yp, z1 . . . , zq) is such
that f(b1, . . . , bp, c1 . . . , cq) = 0 for all bi ∈ A+, i = 1, . . . p and cj ∈ A−, j =
1, . . . , q.

The factor algebra F (A, ∗) = F 〈Y,Z, ∗〉/T (A, ∗) is the relatively free algebra
in the variety of algebras with involution generated by (A, ∗). We denote by
Fp,q(A, ∗) the subalgebra of F (A, ∗) generated by Yp = {y1, . . . , yp} and Zq =
{z1, . . . zq} and assume that by Fm(A, ∗) = Fm,m(A, ∗).

The Hilbert series of Fp,q(A, ∗) is defined as a formal power series

H(A, ∗, y1, . . . , yp, z1 . . . , zq) =
∑
(a,b)

dimF (a,b)
p,q ya11 . . . y

ap
p z

b1
1 . . . z

bq
q

or if we use the shorter notation Y a
m = (ya11 . . . y

ap
p ) and Zbm = (zb11 . . . z

bq
q ) then

H(A, ∗, Yp, Zq) =
∑
(a,b)

dimF (a,b)
p,q Y a

p Z
b
q
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For ordinary polynomial identities one of the most important numerical invari-
ants of the polynomial identities of A is the Sn-cocharacter sequence. Similarly
for ∗-polynomial identities one considers the characters of the wreath product
Z2 o Sn [6]. Let us denote by χλ,µ the irreducible Z2 o Sn-character associated
with the pair of partitions (λ, µ). The Z2 oSn-module structure of the set of mul-
tilinear polynomilas in Y and Z namely Pn(A, ∗) and the GLm×GLm-module
structure of Fm(A, ∗) are related by the following results given by Giambruno.

Theorem 2.1 ([7, Theorems 1 and 2]) If

χn(A, ∗) =
∑

|λ|+|µ|=n

mλ,µχλ,µ,

H(A, ∗, Ym, Zm) =
∑
n≥0

∑
|λ|+|µ|=n

bλ,µSλ(Ym)Sµ(Zm),

then mλ,µ = bλ,µ for all λ, µ, where Sλ(Ym) and Sµ(Zm) are the Schur functions
indexed by λ and µ, respectively.

By analogy with the proper (or commutators) polynomial identities for ordi-
nary PI algebras, in the ∗-case one considers the so-called Y-proper polynomial
identities. They are the ∗-identities in which all symmetric variables participate
in commutators only (see [4]).

By analogy ([6]), the corresponding relations for ∗-polynomial identities
of the Hilbert series of the relatively free algebra and its proper elements
(Bm(A, ∗)) is

H(Fm(A, ∗), Yp, Zq) = H(Bm(A, ∗), Yp, Zq)
m∏
i=1

1

1− yi
.

Studying the cocharacters of an algebra A, one considers also its sequence
of colengths. In the ∗-case this is

ln(A, ∗) =

n∑
k=0

lk,n−k(A, ∗) where lk,n−k(A, ∗) =
∑
λ`k

µ`n−k

mλµ, n = 1, 2, . . . ,

i.e. the sequence of lengths of the modules Pn(A, ∗).
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3 Colength of A = M2 ⊕Mop
2

Drensky and Giambruno [5] have obtained the Hilbert series for the proper
elements Bp,q for algebra M2 ⊕Mop

2 , i.e

H(Bp,q, Tp, Uq) =

p∏
i=1

1

1− ti

q∏
j=1

1

(1− uj)2

(∑
n≥1

S(n,n)(Tp, Uq)

)
− c(Tp, Uq),∑

S(n,n)(Tp, Uq) =
∑

S(λ1,λ2)(Tp)S(µ1,µ2)(Uq),

(1)

where the summation runs on all (λ1, λ2) and (µ1, µ2) with λ1 + µ2 = λ2 + µ1
and the corrections c(Tp, Uq) is

c(Tp, Uq) =

p∏
j=1

1

1− uj

(
S(13)(Tp, Uq) +

∑
n≥1

S(n)(Tp, Uq)

)
.

The description of the multiplicities mλ,µ is given in terms of the multiplicity
series of the polynomial f(Tp, Uq)

M(f, Tp, Uq) =
∑
λµ

mλµT
λ
p U

µ
q .

Also we denote by YT (and similarly YU ) the Young operator which sends the
multiplicities series of f(Tp, Uq) to the multiplicities series of

∏p
i=1

1
1−ti f(Tp, Uq),

i.e.,

YT (M(f(Tp, Uq))) = M

( p∏
i=1

1

1− ti
f(Tp, Uq)

)
Since

H

( ∑
λ1+µ2=λ2+µ1

S(λ1,λ2)(Tp)S(µ1,µ2)(Uq)

)
=

1

(1− t1t2)(1− u1u2)(1− t1u1)

we obtain that

Theorem 3.1 The multiplicity series of proper identities of the algebra M2 ⊕
Mop

2 is obtained by applying two times Young operator with respect to U and
ones to T , i.e.,

M(B(M2 ⊕Mop
2 ), Tp, Uq) = YTY2

U

(
1

(1− t1t2)(1− u1u2)(1− t1u1)

)
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Let f1 = YTY2
U

(
1

(1−t1t2)(1−u1u2)(1−t1u1)

)
. After applying Young opera-

tor(see [3]) the number of variables increases by one. Hence in our case variables
become t1, t2, t3 and u1, u2, u3, u4. To find the colength we have to substite
t1 = t2 = t3 = t and u1 = u2 = u3 = u4 = u. Then we obtain:

f1 =
t5u9 + t4u8 − t4u4 + t3u7 − t3u4 − u3t3 − t2u6 − t2u5 + t2u2 − tu5 + tu+ 1

(1 + u2)(1− t)2(1− t3)(1− t2u)(1 + u)3(1 + t)(1− tu)2(1 + tu)2(1− tu2)2(1− u3)2(1− u)5
(2)

f2 =

p∏
j=1

1

1− uj
S(1,1,1)(Tp, Uq) =

p∏
j=1

1

1− uj

3∑
k=1

S(1k)(Tp)S(13−k)(Uq)

=

p∏
j=1

1

1− uj

(
S(0)(T3)S(13)(U4) + S(1)(T3)S(12)(U4) + S(12)(T3)S(1)(U4) + S(13)(T3)S(0)(U4)

)

=
u3 + tu2 + t2u+ t3

(1− u)4
(3)

f3 =

p∏
j=1

1

1− uj
S(n)(Tp, Uq) =

p∏
j=1

1

1− uj

∑
n≥1

S(k) × S(n−k)

=
1

(1− u)4

(
1

(1− t)3(1− u)4
− 1

) (4)

4 Results

The main result of our paper is the following

Theorem 4.1 The colength series of the ∗-identities of M2 ⊕Mop
2 is

l(t, u) = M(H(B(M2 ⊕Mop
2 ), t, t, t, u, u, u, u)) = f1 − f2 − f3,

where f1, f2 and f3 are given by equations (2),(3) and (4).

We us denote M(f, T, U) =
∑

n

∑
k

∑
λ,µmλµT

λ, Uµ and when one substi-

tutes ti = t, i = 1, . . . , p and uj = u for j = 1, . . . , q then obtains M(f, t, u) =∑
n

∑
k

(∑
λ,µmλµ

)
tkun−k =

∑
n

∑
k lk,n−kt

kun−k. This is the way to get the

colength lk,n−k =
∑

λ,µmλµ.
We use Maple for symbolic computation, some technique making the ratio-

nal function into partial fractions and we obtain the expression for lk,n−k in
terms of n and k. The colength is too large to be included here. We are still
looking for better form of it.



Boumova 71

5 Acknowledgments

The author is grateful to V. Drensky for useful discussion, help and attention
to the work.

References

[1] V. Drensky, Codimensions of T-ideals and Hilbert series of relatively free
algebras, J. Algebra 91 (1984), 1-17.

[2] V. Drensky, Free Algebras and PI-Algebras, Springer-Verlag, Singapore,
1999.

[3] V. Drensky, G.K. Genov, Multiplicities of Schur functions in invariants of
two 3× 3 matrices, J. Algebra 264 (2003), 496-519.

[4] V. Drensky, A. Giambruno, Cocharacters, codimensions and Hilbert series
of the polynomial identities for 2 × 2 matrices with involution, Can. J.
Math. Vol. 46 (4), 1994 pp. 718-733

[5] V. Drensky, A. Giambruno, Cocharacters, codimensions and Hilbert se-
ries of the polynomial identities for the simple ∗-algebra M2 ⊕ Mop

2 , in
preparation

[6] A. Giambruno, A. Regev, Wreath products and P.I. algebras, J. Pure and
Applied Algebra, Vol. 35, (1985), 133-149.

[7] A. Giambruno, GL × GL-representations and ∗-polynomial identities,
Comm. Algebra, 14(1986), 787-796.

[8] L.H. Rowen, Ring Theory, Vol.1 New York (NY): Academic Press; 1988.


