
Fifteenth International Workshop on Algebraic and Combinatorial Coding Theory
June 18-24, 2016, Albena, Bulgaria pp. 7–12

New polynomials for strong algebraic
manipulation detection codes 1

Maksim Alekseev alexeev@vu.spb.ru
State University of Aerospace Instrumentation, St.Petersburg, B. Morskaya str., 67,
190000, Russia

Abstract. Algebraic manipulation detection codes were introduced in 2008 to
protect data against a special type of a modification: algebraic manipulation. There
are three classes of codes: weak, strong and stronger ones. One of the most effective
ways of constructing strong and stronger codes is based on polynomials. In this
paper a new family of polynomial functions for strong codes is proposed, which may
lead to higher detection capabilities and lower computational complexity of encoding
and decoding procedures.

1 Introduction

An algebraic manipulation is a model of an undesirable data modification [1, 2].
For a detailed description of the model, [2] is recommended. Briefly, an additive
data distortion is called an algebraic manipulation if its value does not depend
on a value-to-be-distorted (a distortion’s source has no knowledge about a value-
to-be-distorted).

Algebraic manipulation detection (AMD) codes were proposed to guarantee
a high level of data integrity in case of algebraic manipulations. The data-
to-be-protected is firstly encoded using an AMD code, and then an obtained
codeword c is processed. If a codeword c is distorted with an error e, then this
will be detected, although with some small error masking probability Pundet. It
should be mentioned that no external secret key is used: an information in a
codeword c is enough to recover the original value if no error happened. The
main advantage of AMD codes comparing to classic linear codes is that every
q-ary linear code has qk − 1 undetectable errors, where k is a dimension of a
code. Thus, distortions corresponding to codewords are undetectable. AMD
codes are able to detect any distortion with some nonzero probability 1−Pundet

because of their nonlinearity.
Strong AMD codes, which are examined in this paper, were proposed for the

protection against a strong manipulation model. A strong manipulation model
describes situations when a value-to-be-protected is known to the distortion’s

1The research of the author is supported by the Ministry of Education and Science of the
Russian Federation under grant agreement N 2.2716.2014/K from 17.07.2014.

8 ACCT2016

source (but not a codeword c). It may lead to a more sophisticated choice of a
distortion’s value by the source.

Although originally AMD codes were proposed for providing data integrity
in linear secret sharing schemes and fuzzy extractors [1], several new applica-
tions were found. AMD codes are utilized in fields such as: design of secure
cryptographic devices resistant to injected faults, fault–tolerant storage devices,
public key encryption against related key attacks, anonymous quantum com-
munication, and others [3, 4].

This paper will consider systematic AMD codes over GF (2n), which are the
most practical for hardware implementation.

2 Strong AMD codes

Nonlinear strong AMD codes were proposed for the protection against the
strong algebraic manipulations. Their encoding procedure is probabilistic and
controlled by a random number that is located inside the device is and not
observable or accessible (but also may be distorted). Therefore, for each infor-
mational message there are several possible codewords and the encoding result
is chosen between them on the basis of the random number’s value.

Definition. Let y ∈ GF (2k) be an informational message to be encoded,
x ∈ GF (2m) be a random number. A code

C = {(y, x, f(x, y))}

is a systematic strong AMD code if the encoding function f(x, y) ∈ GF (2r)
satisfies the following inequality:

Pundet ≤ max
y,e:ey 6=0

|{x : S(c̃) = 0}|
|{x}| < 1, (1)

where the error e = (ey ∈ GF (2k), ex ∈ GF (2m), ef ∈ GF (2r)), the distorted
codeword c̃ = c+e = (ỹ, x̃, f̃(y)) = (y+ey, x+ex, f(x, y)+ef), and the syndrome
is S(c̃) = f(x̃, ỹ) + f̃(x, y).

In other words, there are no pairs of y and e with non–zero ey such that the
syndrome S(c̃) will be equal to zero (meaning the error is undetected) at all
values of the random variable x. The detection capability of all AMD codes de-
pends on the maximum number of the syndrome’s roots. For strong codes, the
syndrome equation’s roots are values of a random number x for which S(c̃) = 0
for fixed pairs of messages y and errors e. Strong AMD codes provide a detec-
tion of errors that distort an informational part y of a codeword, and can also
have the same effect on other parts (x and f(x, y)). It should be noted that
Pundet is a worst–case probability of error masking (an achievable bound).

Alekseev 9

Classic strong AMD codes are based on error correcting codes [2, 4], a multipli-
cation in finite fields [2, 4], message authentication codes [2, 4], a scalar product
operation [5], and others.

There is a subset of strong AMD codes that are called stronger AMD codes.
Stronger codes satisfy the equation (1) for all e 6= 0, not only for e : ey 6=
0. Otherwise stated, stronger AMD codes are capable of detecting all error
patterns, even if they do not disturb an informational part y of a codeword
(only x or/and f(x, y)).

There is only one family of systematic stronger AMD codes proposed for
the moment. The construction is based on polynomials. Initially, the next
encoding polynomial was proposed:

f(x, y) = y1x + y2x
2 + . . . + ytx

t + xt+2, (2)

y = (y1, . . . , yt), x, yi ∈ GF (2r). Later, Karpovsky et al. developed this code
into a sophisticated and flexible construction with a variety of encoding poly-
nomials for different parameters [3]. An encoding function is always a sum
of two polynomials: f(x, y) = A(x) + B(y, x). For example, as stated above
A(x) = xt+2. A power of A(x) is greater than that of B(y, x).

Let us consider another example of an AMD code based on polynomials.
The code with r = 2 bits, k = 4r bits (y = (y1, y2, y3, y4)), m = 2r (two
variables x = (x1, x2)), xi, yi ∈ GF (2r) has the following encoding polynomial:

f(x, y) = A(x) + B(y, x) =
(
x1x

3
2 + x3

1x2

)
+

(
y1x1 + y2x

2
1 + y3x2 + y4x

2
2

)
. (3)

The construction based on polynomials is optimal and close to optimal for
many sets of parameters [3]. In many applications it is more suitable to use
stronger codes based on polynomials than strong codes, even if error detection
only in an information part y is required.

However, there is another type of polynomials that can be used as an en-
coding function for strong AMD codes.

3 Proposed code construction

Let y ∈ GF (2k=ar) and x ∈ GF (2m=br) bits, a, b, r ≥ 1. Let us define the
following family of polynomial functions:

f(x, y) =
a∑

i=1

yix
αi,1

1 x
αi,2

2 . . . x
αi,b

b =
a∑

i=1

yi

b∏

j=1

x
αi,j

j , (4)

where yi, xj ∈ GF (2r), αi,j ∈ {0, 2l}, 0 ≤ l < r. For each consecutive i, a new
set of αi,j is selected in order to minimize the sum

∑
j αi,j , and the set of all

10 ACCT2016

zeros is prohibited. Also, a number of available sets of α is limited due to the
restriction:

∑
j αi,j < r.

Example 1.1. Let a = 2, b = 1, thus, y = (y1, y2) and there is one variable
x. Then the next sets of α are chosen:

α1,1 = 20,

α2,1 = 21.

The obtained polynomial is:

f(x, y) = y1x
20

+ y2x
21

= y1x + y2x
2. (5)

Example 2.1. Let a = 3, b = 3, thus, y = (y1, y2, y3) and x = (x1, x2, x3).
The next sets of α are chosen:

α1,1 = 20, α1,2 = 0, α1,3 = 0,

α2,1 = 0, α2,2 = 20, α2,3 = 0,

α3,1 = 0, α3,2 = 0, α3,3 = 20.

The following polynomial is constructed:

f(x, y) = y1x1 + y2x2 + y3x3. (6)

Example 3.1. Let a = 6, b = 2, therefore, y = (y1, . . . , y6) and x = (x1, x2).
Then the next sets of α are chosen:

α1,1 = 20, α1,2 = 0,

α2,1 = 0, α2,2 = 20,

α3,1 = 21, α3,2 = 0,

α4,1 = 0, α4,2 = 21,

α5,1 = 20, α5,2 = 20,

α6,1 = 20, α6,2 = 21,

The constructed polynomial is:

f(x, y) = y1x1 + y2x2 + y3x
2
1 + y4x

2
2 + y5x1x2 + y6x1x

2
2. (7)

Theorem. A code

C = {y ∈ GF (2ar), x ∈ GF (2br), f(x, y) ∈ GF (2r)}
with an encoding function f(x, y) defined by the equation (4) is a strong AMD
code providing an error masking probability

Pundet ≤ 1− (2r − v)2−(u+1)r,

Alekseev 11

where p is the power of the encoding polynomial, and p = u(2r − 1) + v, u ≤ b,
v < 2r − 1.

From the equation (6), we can see that the proposed code is a generaliza-
tion of the previously presented strong AMD code based on a scalar product
operation, since the family of polynomials (4) includes its encoding function [5].

A code construction defined by the Theorem has the same formula of an
error masking probability (that depends on a power of a polynomial) as stronger
codes based on polynomials [3]. Let p be a power of a polynomial for a stronger
code with parameters k, m and r, and p† be a power of a proposed polynomial
for same parameters. Then if p† < p−1, a proposed code provides lower Pundet

and lower computational complexity. If p† = p − 1, a proposed code provides
the same Pundet, but its polynomial has a lower power and less monomials
(thus, lower complexity). When p† ≥ p, a stronger code is more efficient than
a proposed one. Although a power of an encoding polynomial from Theorem
grows faster than that of stronger codes, for small a = k/r it is possible to
construct a strong code with a lower power of a polynomial.

In conformity with code definitions, a replacement of stronger AMD codes
with proposed strong ones is feasible only in cases when it is sufficient to pro-
vide error detection in informational parts y of codewords (not in all parts).
However, this requirement seems to be adequate for most applications.

Let us demonstrate several examples when stronger AMD codes can be
effectively replaced with proposed strong AMD codes.

Example 1.2. Let k = 8 bits, m = 4 bits, r = 4 bits. Then a = k/r = 2,
b = m/r = 2, y = (y1, y2), yi, x ∈ GF (24) (similar to the Example 1.1). A
stronger code from [3] uses the next polynomial as an encoding one:

f1(x, y) = y1x + y2x
2 + x5.

The code provides Pundet ≤ 4/24 = 0.25.
The encoding polynomial for the proposed code with same parameters is

presented in the Example 1.1 by the equation (5). It is easy to see that the
encoding polynomial has the lower power and requires less computations. The
code provides Pundet ≤ 2/24 = 0.125.

Example 2.2. Let k = m = 12 bits, r = 4 bits. Thus, a = k/r = 3,
b = m/r = 3, y = (y1, y2, y3) and x = (x1, x2, x3), yi, xi ∈ GF (24) (similar to
the Example 2.1). The polynomial to construct a stronger code from [3] is:

f1(x, y) = y1x1 + y2x2 + y3x3 + x3
1 + x3

2 + x3
3.

The code provides Pundet ≤ 2/24 = 0.125.
The encoding polynomial for the proposed code with same parameters is

presented in the Example 2.1 by the equation (6). This encoding polynomial
is linear and, thus, has significantly lower computational complexity. The code
provides two times lower Pundet ≤ 1/24 ≈ 0.06.

12 ACCT2016

Example 3.2. Let k = 24 bits, m = 8 bits, r = 4 bits. Therefore, a = k/r =
6, b = m/r = 2, y = (y1, . . . , y6) and x = (x1, x2), yi, xi ∈ GF (24) (similar to
the Example 3.1). The encoding polynomial of a stronger code from [3] is:

f1(x, y) = y1x1 + y2x2 + y3x
2
1 + y4x

2
2 + y5x1x2 + y6x

3
1 + x1x

3
2.

The encoding polynomial for the proposed code with same parameters is
presented in the Example 3.1 by the equation (7). Both codes provide the same
Pundet ≤ 3/24 ≈ 0.188. It is easy to see that the proposed polynomial has a
lower power and less monomials and, thus, requires less computations.

4 Summary

A new family of polynomial encoding functions of strong AMD codes is pre-
sented in this paper. Comparing to polynomials used in a stronger AMD code
construction [3], in some cases proposed ones have less monomials (in fact, a
part A(x) of f(x, y) is omitted) and a lower power. This leads to a lower error
masking probability and lower computational complexity, that can be critical
for many modern applications. Similar efficient encoding and decoding methods
based on the Horner scheme described in [3] can be used for proposed codes.
Furthermore, since powers of monomials are sums of {0, 2l}, l ≥ 0, a normal
basis of a finite field can be utilized for squaring.

References

[1] R. Cramer, Y. Dodis, S. Fehr, C. Padro, D. Wichs, ”Detection of algebraic
manipulation with applications to robust secret sharing and fuzzy extrac-
tors”, Advances in Cryptology - EUROCRYPT 2008, pp. 471-488.

[2] E. Jongsma, ”Algebraic manipulation detection codes”, Bachelorscriptie,
Mathematisch Instituut, Universiteit Leiden, 2008.

[3] M.G. Karpovsky, Z. Wang, ”Design of Strongly Secure Communication and
Computation Channels by Nonlinear Error Detecting Codes”, IEEE Trans
Computers, Nov. 2014.

[4] R. Cramer, S. Fehr, C. Padro, ”Algebraic Manipulation Detection Codes”,
SCIENCE CHINA Mathematics 56, pp. 1349-1358, 2013.

[5] M. Alekseev, ”Two Algebraic Manipulation Detection Codes Based on a
Scalar Product Operation”, Proceedings of the 9th International Workshop
on Coding and Cryptography 2015 - WCC2015, Paris, France, April 2015.

