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1. Introduction

The Dedekind’s problem (1897) —a problem of
countingthe elements of free distributive latticesof
generators, or equivalentithe number)(n) of
monotone Boolean functions (MBFs)oYariables

The investigations of this problem are focused In two
main directions:

to compute this number for a given(by deriving

appropriate formulas for it, or by algorithms for
counting, etc.);

to estimate this number (many formulas for

evaluatingy(n) are obtained by Kleithman,
Korshunov, Kisielewicz, Shmulevich etc.).
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1. Introduction

Till now, the values of)(n) are known only fom < 8:

2414682040 998 R. Church, 1965
56130437 228687 557907 788D. Wiedemann, 1991

n P(n) Computed by
0 2 R. Dedekind, 1897
1 3 R. Dedekind, 1897
2 6 R. Dedekind, 1897
3 20 R. Dedekind, 1897
4 168 R. Dedekind, 1897
5 7581 R. Church, 1940
6 7828354 M. Ward, 1946
7

8
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1. Introduction

To feel the complexity of the problem we note that:

iIn 1991 Wiedemann used a Cray-2 processor for
about 200 hours to computg8);

It took more than a century to compute the last 4
values ot)(n).

The algorithms for computing(n) are not too

numerous and various. Most of them follow the principle
"generating and counting". Other algorithms use
propositional calculus and #SAT-algorithms. The most
powerful algorithms compute(8) by appropriate
decomposition of functions and/or sets.
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1. Introduction

This work continues our previous investigations of the
Dedekind’s problem. They are based on the properties of
a matrix structure, defined by us. We developed a new
algorithm for generating (and counting) all MBFs up to 6
variables. In spite of its numerous improvements, it is

not powerful enough for computing the next values in
acceptable running-time.

Here we represent some new ideas about applying the
dynamic-programing strategy in solving the Dedekind’s
problem.
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2. Basic notions

Let {0, 1}" be then—dimensional Boolean culsnd
a=(ay,...,a,), 3= (bi,...,b,) be binary vectorsin it.

Ordinal numberof « Is the integer
#(a) =a1.2" P+ a.2" % + ...+ a,.2"%

Vectora precedes lexicographicallectors, if 4 an
iIntegerk, 1 < k < n, such that; = b;, for

1 =1,2,....k—1,anda; < b, orif a = 0.

The vectors of 0, 1}™ are in lexicographic order iff
their ordinal numbers form the sequence
0,1,...,2" —1.
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2. Basic notions

The relation "= (precedes)s defined over
{0,1}" X {O 1}” as follows:.a < Gif a; < b;, for
1=1,2,...,n;

Whena < ﬁ or 5 < awe callae and comparable,
otherwise they arencomparable;

A Boolean functiory of n variables is a mapping
f:{0,1}" — {0, 1}. The functionf is calledmonotone
if forany o, 3 € {0,1}", a < gimplies f(«a) < f(3).

If fisa MBF, it has an unigusinimal disjunctive

normal form(MDNF), where all literals in the prime
Implicants of f are uncomplemented.
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3. Preliminary results

We define anatrix of precedenced the vectors in
{0,1}": M,, = ||m; ;|| has dimensioR™ x 2", and for
eacha, 7 € {0,1}", such that#(«) =« and#(3) = j,
we setm,; ; = 11If a <X 3, orm; ; = 0 otherwise.
Theorem 1 The matrix)M,, is a block matrix, defined
recursively:

1 1 Mn—l Mn—l
Ml — ) Mn — )
01 On—l Mn—l

wherel,,_; denotes the same matrix of dimension
on=L x on=1 ‘andO,,_ is the2"1 x 2"~1 zero matrix.
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3. Preliminary results

Theorem 2 Leta = (ay,as,...,a,) € {0,1}",

#(a) =1,1 <1 <2"—1,anda has ones in positions
(21,29, ...,%-), 1 <r < n.Then the-th rowr; of the
matrix M, 1s the vector of functional values of the prime
implicantc; = z;,z;, ... z; , .. a IS a characteristic
vector of the literals irc;, which 1s a monotone function.
When#(«) = 0, the zero row of\/,, corresponds to the

constantl.

ACCT 2012. Pomorie — pn. 9/25



3. Preliminary results

lllustration of the assertion of Theorem 2, for= 3.

a= (x1,22,23) | i = #(a) M3 Ci
(00 0) 0 11111111]1
(001) 1 0101 0101| z4
(010) 2 0011 0011| z,
(011) 3 0001 0001 zoxs
(100) 4 00001111 «,
(101) 5 0000 0101 z,x3
(110) 6 0000 0011 z1xo
(111) 7 0000 0001| zixoxs
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3. Preliminary results

So the vector of any monotone functigns a linear
combination

f(il?l, Ly o o ,len) — aApTo Vairi V...V agm_1Tron_1,
wherer; 1s the:-th row of the matrix)/,,, and

a; € {0,1},fori =0,1,...,2" — 1.

In other words M/, plays the role of a generator matrix
for the set of all MBFs of, variables.

Whenf(xi,22,...,2,) =7, Vi, V...V 1y
corresponds to a MDNF of, then any two rows; and
ri,, 1 <7 <l <k, are pairwise incomparable.
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3. Preliminary results

Our algorithm, calledsEN, generates all MBFs

of n variables(input)

asvectors in lexicographic ordegioutput).
Algorithm GEN.

1) Generate the matri/,,.

2) Setf = (0,0,...,0)—the zero constant. Outpyit
3) Foreachrow; of M,,,» =2"—1,...,0,

setf = r; and.

a) outputf;

b) for each position, j =2" —2,2" —3,...,1+ 1,
check whethey ;5] = 0 (i.e. thei-th and thej-th rows
are incomparable). If "Yes" then set (recursively)
f = fVr;andgo to step 3.a.

4) End.
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3. Preliminary results

The essential part of the code of GEN (steps 3.a and 3.b)
written In C Is:
void Gen | ( bool G[], int 1) {
bool H [Max_Dim];
for ( int k=i; k<N; k++ ) /[ N= 2'n
HIK]= G[K] || MII][K]; /I M is M_n
Print ( H );
for ( int = N-1; >i; J-- ) /| step 3.b
if ( H[] ) Gen_| ( H, j);
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4. Outline of the new algorithm

Trying to Iimprove and speed-up the algorithm GEN, we
observe that:

the same subfunctions are generated many times;
their number grows extremely fast whemrows.

So we shall concentrate on counting that avoids
generating.

We set the problertiet the value of the celh; ; In

matrix M,, be O, for a givem. How many MBFs can be
obtained by disjunction of row; and all possible rows
(one or more than one), having indices;?".
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4. Outline of the new algorithm

So we modify the algorithm GEN (its new version we
call GEN_Cell):

we add to the function Gen_| a parameter for the
depth of the recursion;

we add a counter for the generated functions;

we store the integers, computed by this counter, in a
2" x 2" matrix Res,,;

So we have to fill only these cells éfes,,, which
correspond (i.e. have the same indices) to zero elements
above the main diagonal i#/,,.

Example. The results fon = 4 are:
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4. Outline of the new algorithm

My row Resy S
11111111 11111111 O| 00000 OO0 O00O0OO0OOOOO 1
01010101 01010101 1| 00503 050 10201010 19
00110011 00110011 2| 00003 500 12001100 14
00010001 00010001 3|1 0000520110 15301210 50
00001111 00001111 41 00000 000 12110000 6
00000101 00000101 5100000 0110 15231010 25
00000011 00000011 6| 00000 000 143311060 14
00000001 00000001 7|1 00000 000 153512160 19
00000000 111111112 8| 00000 000 O000O0O0OO0OO 1
00000000 01010101 9| 00000 000 00201010 5
00000000 00110011 10 | O0O000 000 00001100 3
00000000 00010001 11 | 00000 000 00001210 5
00000000 000011112 12 | 00000 000 00000O0OO0O 1
00000000 0O0OOOO101 13| 00000 000 00000010 2
00000000 O0OOOO0OO11 14 | 00000 000 00000000 1
00000000 0O0OOOOOO1 15| 00000 000 0O000O0OO0OO0O0 1

Total: S=167
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4. Outline of the new algorithm

Important observation: the same submatriced/in

(more precisely, certain shapes of zeros in them),
correspond to the same shapes of non-zero values in the
matrix Resy.

Obviously, this is due to the recursively defined block
structure of the matrid/,, and the nature of the

algorithm GEN.

This fact demonstrates the propeowyerlapping
subproblems- the first key ingredients for applying the
dynamic programing strategy.
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4. Outline of the new algorithm

The same Is valid for the second key propergyptimal
substructure. Indeed, If (for a giver) the subproblems
are solved, I.e. the necessary values are computed and
stored in the matrifies,,, we can obtain the solution of
the problem (i.e. to find)(n)) as follows:

(1) sum the numbers in theth row of the matrix
Res,, and add 1 (because every row/df, Is in itself a
monotone function). Denote this sum by for
1 =0,1,...,2" — 1,

(2) compute the surf = 57 ' s;;

(3) setyy(n) = S + 1 (since the constant O is yet not
counted) and return It.
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4. Outline of the new algorithm

Next improvement of algorithm GEN_Cell: after
computing the value aoRes,, (i, j), we copy itin the
corresponding cells of the same shapes above — so we
prevent from solving the same subproblems more than
once.

Even so, executing GEN_Cell for one cell only can cause
generating many subfunctions, which have been already
generated. Their memoization can take a large amount of
memory, and our goal is to restrict the generating as
possible.
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4. Outline of the new algorithm

The next our idea: let < j, M,(¢,5) = 0 and

Res,(i,5) = 0. We need to compute the value of
Res,(i,7), i.e. to count all MBFs, which are disjunction
of ¢-th row of M,, with all rows of M,,, having indices

> ]

All cells of the:-th row from thej-th cell to the last one
we consider as a vector and denote it(Dy ).
Analogously for the-th row, all cells from the-th to the
last cell we consider as a vector and denote i{1y).
Fora andg we have 3 cases: (h) < 3; (2) 8 < «, and

(3)  and3 are incomparable. Using the properties of the
matrix M, and the above arguments we can prove:
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4. Outline of the new algorithm

Proposition 1 Case (1): ifa < (3 then

Res,(i,5) =1+ ZZ:;L Res,(j,k) = s; + 1.
Proposition 2 Case (2): if3 < o then

Res,(i,§) =1+ > L Resy(i, k).
Suppose we want to compuktes, (¢, 7) and we have
already computedes, (¢, k) and Res, (7, k), for
k=4+4+1,...,2" — 1.
If « < G orpg < a, we apply Propositionl1 or 2,
respectively.

For the third case we use GEN_Cell, since we have not
found a better algorithm (or a formula) till now.
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4. Outline of the new algorithm

Proposition 3 For a givenn, the matrix\/,, contains4”

elements and.:
1) 3" of them are equal to 1 and they are placed on the

main diagonal or above It;

2) all (4" — 2") /2 elements under the main diagonal are
zeros, and als@4” — 2.3" + 2™)/2 zeros are placed
above the main diagonal.

So our algorithm has to compute and fill In

(4™ — 2.3" + 2") /2 numbers in the cells akes,,.

Some of them are obtained in accordance with the

considered 3 cases.
The rest of them are simply copies of numbers already

computed.
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4. Outline of the new algorithm

Experimental results for the number of the celldfs,,
In each case, fot = 6, 7, 8:

n | (4" —2.3"4+2")/2 | Incase 1| Incase 2| In case 3| Copies
6 1351 211 26 244 570
7 6069 665 57 2645 | 2702
8 26335 2059 120 12018 | 12138
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5. Conclusions

The results In last table seem to be optimistic, especially
if we compare them with the values ¢fn), given in the
first table.

The main and still open problem is to develop an
efficient way for computing in Case 3.

Some secondary problems also have to be solved:
representation and summation of long integers, efficient
usage of the memory (especially tdf,, and Res,,), etc.
Efficient solutions of these problems will decrease
essentially the running-time for computing7) and

(8) and may allow us to computg(9) in a reasonable
time.
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