
One more way for counting
monotone Boolean functions

Valentin Bakoev

”St. Cyril and St. Methodius” University,

Veliko Turnovo, Bulgaria

ACCT 2012, Pomorie – p. 1/25

1. Introduction

The Dedekind’s problem (1897) –a problem of
countingthe elements of free distributive lattices ofn
generators, or equivalently,the numberψ(n) of
monotone Boolean functions (MBFs) ofn variables.

The investigations of this problem are focused in two
main directions:

to compute this number for a givenn (by deriving
appropriate formulas for it, or by algorithms for
counting, etc.);

to estimate this number (many formulas for
evaluatingψ(n) are obtained by Kleithman,
Korshunov, Kisielewicz, Shmulevich etc.).

ACCT 2012, Pomorie – p. 2/25

1. Introduction

Till now, the values ofψ(n) are known only forn ≤ 8:

n ψ(n) Computed by

0 2 R. Dedekind, 1897

1 3 R. Dedekind, 1897

2 6 R. Dedekind, 1897

3 20 R. Dedekind, 1897

4 168 R. Dedekind, 1897

5 7 581 R. Church, 1940

6 7 828 354 M. Ward, 1946

7 2 414 682 040 998 R. Church, 1965

8 56 130 437 228 687 557 907 788D. Wiedemann, 1991

ACCT 2012, Pomorie – p. 3/25

1. Introduction

To feel the complexity of the problem we note that:

in 1991 Wiedemann used a Cray-2 processor for
about 200 hours to computeψ(8);

it took more than a century to compute the last 4
values otψ(n).

The algorithms for computingψ(n) are not too
numerous and various. Most of them follow the principle
"generating and counting". Other algorithms use
propositional calculus and #SAT-algorithms. The most
powerful algorithms computeψ(8) by appropriate
decomposition of functions and/or sets.

ACCT 2012, Pomorie – p. 4/25

1. Introduction

This work continues our previous investigations of the
Dedekind’s problem. They are based on the properties of
a matrix structure, defined by us. We developed a new
algorithm for generating (and counting) all MBFs up to 6
variables. In spite of its numerous improvements, it is
not powerful enough for computing the next values in
acceptable running-time.

Here we represent some new ideas about applying the
dynamic-programing strategy in solving the Dedekind’s
problem.

ACCT 2012, Pomorie – p. 5/25

2. Basic notions

Let {0, 1}n be then−dimensional Boolean cubeand
α = (a1, . . . , an), β = (b1, . . . , bn) be binary vectors in it.

Ordinal numberof α is the integer
#(α) = a1.2

n−1 + a2.2
n−2 + . . .+ an.2

0;

Vectorα precedes lexicographicallyvectorβ, if ∃ an
integerk, 1 ≤ k ≤ n, such thatai = bi, for
i = 1, 2, . . . , k − 1, andak < bk, or if α = β.
The vectors of{0, 1}n are in lexicographic order iff
their ordinal numbers form the sequence
0, 1, . . . , 2n − 1.

ACCT 2012, Pomorie – p. 6/25

2. Basic notions

The relation "�" (precedes)is defined over
{0, 1}n × {0, 1}n as follows:α � β if ai ≤ bi, for
i = 1, 2, . . . , n;

Whenα � β or β � α we callα andβ comparable,
otherwise they areincomparable;

A Boolean functionf of n variables is a mapping
f : {0, 1}n → {0, 1}. The functionf is calledmonotone
if for any α, β ∈ {0, 1}n, α � β impliesf(α) ≤ f(β).
If f is a MBF, it has an uniqueminimal disjunctive
normal form(MDNF), where all literals in the prime
implicants off are uncomplemented.

ACCT 2012, Pomorie – p. 7/25

3. Preliminary results

We define amatrix of precedencesof the vectors in
{0, 1}n: Mn = ||mi,j|| has dimension2n × 2n, and for
eachα, β ∈ {0, 1}n, such that#(α) = i and#(β) = j,
we setmi,j = 1 if α � β, ormi,j = 0 otherwise.
Theorem 1 The matrixMn is a block matrix, defined
recursively:

M1 =





1 1

0 1



 , Mn =





Mn−1 Mn−1

On−1 Mn−1



 ,

whereMn−1 denotes the same matrix of dimension
2n−1 × 2n−1, andOn−1 is the2n−1 × 2n−1 zero matrix.

ACCT 2012, Pomorie – p. 8/25

3. Preliminary results

Theorem 2 Letα = (a1, a2, . . . , an) ∈ {0, 1}n,
#(α) = i, 1 ≤ i ≤ 2n − 1, andα has ones in positions
(i1, i2, . . . , ir), 1 ≤ r ≤ n. Then thei-th row ri of the
matrixMn is the vector of functional values of the prime
implicantci = xi1xi2 . . . xir , i.e.α is a characteristic
vector of the literals inci, which is a monotone function.
When#(α) = 0, the zero row ofMn corresponds to the
constant̃1.

ACCT 2012, Pomorie – p. 9/25

3. Preliminary results

Illustration of the assertion of Theorem 2, forn = 3.

α = (x1, x2, x3) i = #(α) M3 ci

(0 0 0) 0 1 1 1 1 1 1 1 1 1̃

(0 0 1) 1 0 1 0 1 0 1 0 1 x3

(0 1 0) 2 0 0 1 1 0 0 1 1 x2

(0 1 1) 3 0 0 0 1 0 0 0 1 x2x3

(1 0 0) 4 0 0 0 0 1 1 1 1 x
1

(1 0 1) 5 0 0 0 0 0 1 0 1 x1x3

(1 1 0) 6 0 0 0 0 0 0 1 1 x1x2

(1 1 1) 7 0 0 0 0 0 0 0 1 x1x2x3

ACCT 2012, Pomorie – p. 10/25

3. Preliminary results

So the vector of any monotone functionf is a linear
combination
f(x1, x2, . . . , xn) = a0r0 ∨ a1r1 ∨ . . . ∨ a2n

−1r2n
−1,

whereri is thei-th row of the matrixMn, and
ai ∈ {0, 1}, for i = 0, 1, . . . , 2n − 1.

In other words,Mn plays the role of a generator matrix
for the set of all MBFs ofn variables.

Whenf(x1, x2, . . . , xn) = ri1 ∨ ri2 ∨ . . . ∨ rik
corresponds to a MDNF off , then any two rowsrij and
ril, 1 ≤ j < l ≤ k, are pairwise incomparable.

ACCT 2012, Pomorie – p. 11/25

3. Preliminary results

Our algorithm, calledGEN, generates all MBFs
of n variables(input)
asvectors in lexicographic order(output).
Algorithm GEN.
1) Generate the matrixMn.
2) Setf = (0, 0, . . . , 0) – the zero constant. Outputf .
3) For each rowri of Mn, i = 2n − 1, . . . , 0,
setf = ri and:

a) outputf ;
b) for each positionj, j = 2n − 2, 2n − 3, . . . , i+ 1,

check whetherf [j] = 0 (i.e. thei-th and thej-th rows
are incomparable). If "Yes" then set (recursively)
f = f ∨ rj and go to step 3.a.
4) End.

ACCT 2012, Pomorie – p. 12/25

3. Preliminary results

The essential part of the code of GEN (steps 3.a and 3.b)
written in C is:
void Gen_I (bool G[], int i) {

bool H [Max_Dim];

for (int k=i; k<N; k++) // N= 2ˆn

H[k]= G[k] || M[i][k]; // M is M_n

Print (H);

for (int j= N-1; j>i; j--) // step 3.b

if (!H[j]) Gen_I (H, j);

}

ACCT 2012, Pomorie – p. 13/25

4. Outline of the new algorithm

Trying to improve and speed-up the algorithm GEN, we
observe that:

the same subfunctions are generated many times;

their number grows extremely fast whenn grows.

So we shall concentrate on counting that avoids
generating.

We set the problem"Let the value of the cellmi,j in
matrixMn be 0, for a givenn. How many MBFs can be
obtained by disjunction of rowri and all possible rows
(one or more than one), having indices≥ j?".

ACCT 2012, Pomorie – p. 14/25

4. Outline of the new algorithm

So we modify the algorithm GEN (its new version we
call GEN_Cell):

we add to the function Gen_I a parameter for the
depth of the recursion;

we add a counter for the generated functions;

we store the integers, computed by this counter, in a
2n × 2n matrixResn;

So we have to fill only these cells ofResn, which
correspond (i.e. have the same indices) to zero elements
above the main diagonal inMn.

Example. The results forn = 4 are:

ACCT 2012, Pomorie – p. 15/25

4. Outline of the new algorithm

M4 row Res4 si

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 5 0 3 0 5 0 1 0 2 0 1 0 1 0 19
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 2 0 0 0 0 3 5 0 0 1 2 0 0 1 1 0 0 14
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 3 0 0 0 0 5 20 11 0 1 5 3 0 1 2 1 0 50
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 4 0 0 0 0 0 0 0 0 1 2 1 1 0 0 0 0 6
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 5 0 0 0 0 0 0 11 0 1 5 2 3 1 0 1 0 25
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 6 0 0 0 0 0 0 0 0 1 4 3 3 1 1 0 0 14
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 7 0 0 0 0 0 0 0 0 1 5 3 5 1 2 1 0 19

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 9 0 0 0 0 0 0 0 0 0 0 2 0 1 0 1 0 5
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 3
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 11 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 5
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Total: S=167

ACCT 2012, Pomorie – p. 16/25

4. Outline of the new algorithm

Important observation: the same submatrices inM4

(more precisely, certain shapes of zeros in them),
correspond to the same shapes of non-zero values in the
matrixRes4.
Obviously, this is due to the recursively defined block
structure of the matrixMn and the nature of the
algorithm GEN.
This fact demonstrates the propertyoverlapping
subproblems– the first key ingredients for applying the
dynamic programing strategy.

ACCT 2012, Pomorie – p. 17/25

4. Outline of the new algorithm

The same is valid for the second key property –optimal
substructure. Indeed, if (for a givenn) the subproblems
are solved, i.e. the necessary values are computed and
stored in the matrixResn, we can obtain the solution of
the problem (i.e. to findψ(n)) as follows:

(1) sum the numbers in thei-th row of the matrix
Resn and add 1 (because every row ofMn is in itself a
monotone function). Denote this sum bysi, for
i = 0, 1, . . . , 2n − 1;

(2) compute the sumS =
∑2n

−1
i=0 si;

(3) setψ(n) = S + 1 (since the constant 0 is yet not
counted) and return it.

ACCT 2012, Pomorie – p. 18/25

4. Outline of the new algorithm

Next improvement of algorithm GEN_Cell: after
computing the value ofResn(i, j), we copy itin the
corresponding cells of the same shapes above – so we
prevent from solving the same subproblems more than
once.
Even so, executing GEN_Cell for one cell only can cause
generating many subfunctions, which have been already
generated. Their memoization can take a large amount of
memory, and our goal is to restrict the generating as
possible.

ACCT 2012, Pomorie – p. 19/25

4. Outline of the new algorithm

The next our idea: leti < j,Mn(i, j) = 0 and
Resn(i, j) = 0. We need to compute the value of
Resn(i, j), i.e. to count all MBFs, which are disjunction
of i-th row ofMn with all rows ofMn, having indices
≥ j.
All cells of thei-th row from thej-th cell to the last one
we consider as a vector and denote it by(0α).
Analogously for thej-th row, all cells from thej-th to the
last cell we consider as a vector and denote it by(1β).
Forα andβ we have 3 cases: (1)α � β; (2) β ≺ α, and
(3)α andβ are incomparable. Using the properties of the
matrixMn and the above arguments we can prove:

ACCT 2012, Pomorie – p. 20/25

4. Outline of the new algorithm

Proposition 1 Case (1): ifα � β then
Resn(i, j) = 1 +

∑2n
−1

k=j+1Resn(j, k) = sj + 1.

Proposition 2 Case (2): ifβ ≺ α then
Resn(i, j) = 1 +

∑2n
−1

k=j+1Resn(i, k).

Suppose we want to computeResn(i, j) and we have
already computedResn(i, k) andResn(j, k), for
k = j + 1, . . . , 2n − 1.
If α � β or β ≺ α, we apply Proposition 1 or 2,
respectively.
For the third case we use GEN_Cell, since we have not
found a better algorithm (or a formula) till now.

ACCT 2012, Pomorie – p. 21/25

4. Outline of the new algorithm

Proposition 3 For a givenn, the matrixMn contains4n

elements and:
1) 3n of them are equal to 1 and they are placed on the
main diagonal or above it;
2) all (4n − 2n)/2 elements under the main diagonal are
zeros, and also(4n − 2.3n + 2n)/2 zeros are placed
above the main diagonal.
So our algorithm has to compute and fill in
(4n − 2.3n + 2n)/2 numbers in the cells ofResn.
Some of them are obtained in accordance with the
considered 3 cases.
The rest of them are simply copies of numbers already
computed.

ACCT 2012, Pomorie – p. 22/25

4. Outline of the new algorithm

Experimental results for the number of the cells ofResn
in each case, forn = 6, 7, 8:

n (4n
− 2.3n + 2n)/2 In case 1 In case 2 In case 3 Copies

6 1351 211 26 544 570

7 6069 665 57 2645 2702

8 26335 2059 120 12018 12138

ACCT 2012, Pomorie – p. 23/25

5. Conclusions

The results in last table seem to be optimistic, especially
if we compare them with the values ofψ(n), given in the
first table.
The main and still open problem is to develop an
efficient way for computing in Case 3.
Some secondary problems also have to be solved:
representation and summation of long integers, efficient
usage of the memory (especially forMn andResn), etc.
Efficient solutions of these problems will decrease
essentially the running-time for computingψ(7) and
ψ(8) and may allow us to computeψ(9) in a reasonable
time.

ACCT 2012, Pomorie – p. 24/25

THANK YOU

FOR YOUR ATTENTION!

ACCT 2012, Pomorie – p. 25/25

