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L introduction

A Steiner system S(v, k,t) is a pair (X, B), X is a v-set (i.e.

|X| = v ) and B — the collection of k-subsets of X (called blocks)
such that every t-subset (of t elements) of X is contained in
exactly one block of B.
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L introduction

A Steiner system S(v, k,t) is a pair (X, B), X is a v-set (i.e.

|X| = v ) and B — the collection of k-subsets of X (called blocks)
such that every t-subset (of t elements) of X is contained in
exactly one block of B.

A Steiner system S(v,3,2) is a Steiner triple system STS(v).
A Steiner system S(v,4,3) is a Steiner quadruple system SQS(v).

Present a Steiner system S(v, 3,2) (S(v,4,3)) by the binary
incidence matrix (rather a set of rows). It is a binary constant
weight code C of length v, blocks of B are codewords.
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L introduction

Suppose a Steiner system S(v, 3,2), (S(v,4,3)) is presented by a
binary code C.

Then rk(C) = dimension of linear envelope of C' over [F.
The rank of S(v,3,2), (S(v,4,3)) is the rank of code C over [s.

Note that, for the case v = 2" — 1 the minimal rank of S(v, 3,2)
isv—m=2"—m— 1.

The minimal rank of S(2™,4,3) is 2™ —m — 1.
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L introduction

Tonchev (2001,2003) enumerated all different Steiner triple
systems STS(v) and quadruple systems SQS(v + 1) or order
v=2"—1and v+ 1=2™, respectively, both with rank equal to
2™ —m (i.e min + 1).

Osuna (2006): there are 1239 non-isomorphic Steiner Triple
systems STS(31) of rank 27 (i.e min + 1).

In the previous paper (2007), the authors enumerated all different
Steiner quadruple systems SQS(v) of order v = 2™ and rank
<2™ —m+1 (i.e. min + 2).

Now, we enumerate S(v, 3,2), where v = 2™ — 1, of rank
2" —m+1 (min 4 2).
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Suppose S, = S(v,3,2) is a Steiner triple system of order
v=2"—1 and of rank < 2™ —m + 1.
Then, can assume, its dual G(A,,) (m — 2 by v matrix):

1111 1111 1111 1111 ... 0000 0000 0000 000
1111 1111 0000 0000 ... 1111 1111 0000 000
1111 0000 1111 0000 ... 1111 0000 1111 000

Let J(v) = {1,...,v} be the coordinate set of S,. Set
u = (v — 3)/4. Define the subsets J; of J(v):

Jz:{4l_3,4l_2,47/—1,47/}, Z’:l,._‘7U,
and Jy+1 ={v—2,v—1,v}. We have

J(’U):JlU--'UJuUJu_H.
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LF'reliminary Results

We need a class of the quaternary MDS codes:
e (3,2,16)4-code, denoted by L, different I';, = (24)%;

Define the mapping ¢ of E} into E*" setting for ¢ = (c1,...,¢,):
o(c) = (p(c1),...,¢(cn)), where 0 — (1000), 1+~ (0100),
2 — (0010), 3 — (0001).

For a given code (3,2, 16)4-code L, define the constant weight
(12,3,4,16)-code C(L):

C(L) = {¢(c): ce L}.

For x € E" with supp(x) = {j1, jo, j3}, we define a
(4u, 3,4, 16)-code

C(L;x) = C(L; j1, j2, j3) = {(c1,...,¢u) & (cj;,Cjy,¢55) € C(L)},

and ¢; = (0000) if i # j1, jo, j3 (i.e. insert 3 blocks into u blocks).
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L New Construction

Define (split 6 words of weight 2 into 3 pairs):

V(1) = {(1100), (0011)},V(2) = {(1010), (0101)},

V(3) = {(1001), (0110)}.

The sets 552;;),51()2;?,51(}2’1) should satisfy (for all u blocks):

[ 0000 ... 1100 ... 0000 100 T
0000 ... 0011 ... 0000 100
0000 ... 1010 ... 0000 010
0000 ... 0101 ... 0000 010
0000 ... 1001 ... 0000 001
0000 ... 0110 ... 0000 001

= 5B = {c=(0...0111) : supp(c) = Jui1}.
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Let S, = S(u,3,2) be a Steiner system and c®, s=1,2,...k
its words, k = u(u —1)/6. Let STLD, S and SG) pe the sets,
obtained by our construction, based on the families of
(3,2,16)4-codes Ly, Lo, ..., Ly and the constant weight
(4,2,4,2)-codes V (1), V(2) and V (3). Set

§ = sLDysEh yg®),
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Let S, = S(u,3,2) be a Steiner system and c®, s=1,2,...k
its words, k = u(u —1)/6. Let STLD, S and SG) pe the sets,
obtained by our construction, based on the families of
(3,2,16)4-codes Ly, Lo, ..., Ly and the constant weight
(4,2,4,2)-codes V (1), V(2) and V (3). Set

§ = sLDysEh yg®),

Then, for any choice of the codes L1, Ls, ..., Ly, the set S is the
Steiner triple system S, = S(v, 3,2) of order v = 4u + 3 with rank

v—(u—1k(Sy)) —2 < rk(Sy) < v—(u—r1k(Sy)).
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A system S, = S(u,3,2) of order u = 2! — 1 is called boolean if its
rank is u — [, i.e. it is formed by the codewords of weight 3 of the
linear Hamming code of length w.

Theorem 2.

Suppose S, = S(v,3,2) is a Steiner system of order
v =2" —1=4u+ 3. Suppose that its rank not greater than
v—m+ 2.

Then this system S,, is obtained from the boolean Steiner triple
system S, = S(u,3,2) of order u = 2™~2 — 1 using our
construction, described above.
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triple systems S(v,3,2) of order v, whose rank is not greater
than v — m + 2, and the fixed dual code A,,, is equal to

M, =(2°-3%)" x (6)*, k = u(u—1)/6.
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mletm>4andv=2"—-1>15. Setu=(v—3)/4 and
k =wu(u—1)/6. Then, the number M, of different Steiner
triple systems S(v,3,2) of order v, whose rank is not greater
than v — m + 2, and the fixed dual code A,,, is equal to

M, =(2°-3%)" x (6)*, k = u(u—1)/6.

m The overall number Mé") of different Steiner triple systems

S(v,3,2), whose rank < v —m + 2, is equal to
vl (26.32)". (6)"
(uw(u—1)(u—2)--(u+1)/2) - (4. 3!

M) =
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A system S(v,3,2) of order v = 2™ — 1 is called Hamming, if it
can be embedded into a binary non-linear perfect (v, 3,2"~"")-code
(denoted by H,), i.e. if it is the set of words of weight 3 of the
code H,, which contains the zero codeword.
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L Main Results

A system S(v,3,2) of order v = 2™ — 1 is called Hamming, if it
can be embedded into a binary non-linear perfect (v, 3,2"~"")-code
(denoted by H,), i.e. if it is the set of words of weight 3 of the
code H,, which contains the zero codeword.

Theorem 4.

Any Steiner triple system S,, = S(v,3,2) of order v = 2" — 1 and
rank tk(S,) < 2™ —m+ 1 is a Hamming system.
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