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nednHnums
A g-ary cyclic code over F, of
@ length n,
e dimension k and
@ minimum distance d
is denoted by C(q;n, k,d) C Fy.
It is an ideal in the ring F[z]/(z™ — 1) generated by g(zx).

The cyclotomic coset M,(n) modulo n over I, is denoted by:

M™ = {r¢’ modn|j=0,1,...,n, —1}.
Defining set D¢ of C is:

De={0<i<n—1|g(a’)=0}=M"UuMmMuU




Known Bounds on the Minimium Distance

Teopema (Hartmann—Tzeng (HT) Bound)

Given C with minimum distance d with D¢.
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Teopema (Hartmann—Tzeng (HT) Bound)

Given C with minimum distance d with D¢.
Suppose there exist the integers by, m1 and my with
ged(n,my) = 1 and ged(n, mg) = 1 such that

{b1 +i1my +iama | 0 < iy <dop—2, 0<dp <v} C De.

Then d > dy + v.

npumep: Binary Cyclic Code of Length 17

The defining set for the binary cyclic code C(2;17,9,5) of length

n =17 is:

Do =M ={1,2,4,8,9,13,15,16} = {1,2,4,8, -8, —4, -2, —1}.
Then, we have d > 5, withb; =1,m1 =7,m9 =1,dy = 3,v = 1.

Dec 13 O 15 16 O 1 2 O 4
D¢ -4 O -2 -1 O 1 2 O a4
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aepurnuyms (Non-Zero-Locator Code)
Let a g-ary cyclic code C(q;n,k,d) and
e F,s contain the nth roots of unity and o be a primitive
element of order n

e ged(n,ng) =1 and Fy, = Fgu
o FF i contain the nyth roots of unity and 3 be a primitive
e/ement of order ny

be given.
Then L(qe;ng, ke, dg) is a non-zero-locator code of C if there exists

a p > 2 and an integer e, such that Va(x) € L andV c(z) € C:

o
Zc (& *®)a(87)z? =0 mod z* 1, (1)
7=0

holds.
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The Non-Zero-Locator Code (iii)

We rewrite (1).
We search the “longest” sequence:

c(a%)a(B%), (@ a(Bh), ..., c(aH)a(B172),

that results in a zero-sequence of length 1 — 1.
npumep: Binary Cyclic Code of Length 17

De | -4 0 O 2 10O 1
Dp| O ! 3 O O 3
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@ g-ary cyclic code C(q;n, k,d) and
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Theorem on the Minimum Distance

Teopema (Minimum Distance)
Let

@ g-ary cyclic code C(q;n, k,d) and
@ non-zero-locator code L(qp;ny, ke, dy)

@ with ged(n,ny) = 1 and the integer 11 be given.
Then:
« def [ M
d>d" = |=—]|.
B [dz}

Let a(x) = 1 be the low-weight codeword € L(qs; ng,n¢,1). Then,
oo
Zc(aj+e)a(ﬁj)wj =0 mod z* 1,
j=0

becomes '
()1 =0, Vj=0,...,u—1
—> BCH Bound!
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Erasure Channel

Channel Model

@ Input:
g-ary alphabet
@ Output:
(g + 1)-ary
alphabet

Erasure probability is p.

13/21



Erasures and Received Word

Let:

@ the set & = {ig,i1,...,ic—1} with |E] = € be the set of
erroneous positions and

e the polynomial e(z) = Y, ¢ ;2" and
@ ”?7” mark an erasure and

e set D = {jo,j1,.--,J5—1} with |D| = 0 be the set of erased
positions
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Erasures and Received Word

Let:

@ the set & = {ig,i1,...,ic—1} with |E] = € be the set of
erroneous positions and

e the polynomial e(z) = Y, ¢ ;2" and
@ ”?7” mark an erasure and

e set D = {jo,j1,.--,J5—1} with |D| = 0 be the set of erased
positions

and we have the received polynomial:

n—1
Flo) =Y ma’ with 7€ F,U{?}.
=0
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Erasure Polynomial and Modified Received Word

Substitution of 7 by an arbitrary element from [, (zero).
We define the erasure polynomial:

d(z) = Z dizt,

1€D

such that 7, +d; = ¢; +d; =0, Vi € D.
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Erasure Polynomial and Modified Received Word

Substitution of 7 by an arbitrary element from [, (zero).
We define the erasure polynomial:

d(z) = Z dizt,
1€D

such that 7, +d; = ¢; +d; =0, Vi € D.
Let the modified received polynomial r(z) € Fy[z] be

n—1

r(x) = Zrixi = c(x) + d(x) + e(x).

=0
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Syndromes and Erasure-Locator Polynomial

Let a low-weight codeword:
a(x) = H a;?,
jEZ
with | Z| = dy be given.
We define a syndrome polynomial S(z) € Fy-[z] as follows:
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Syndromes and Erasure-Locator Polynomial

Let a low-weight codeword:
= H ajxj,
jEZ
with | Z| = dy be given.
We define a syndrome polynomial S(z) € Fy-[z] as follows:
S(z) = Z (@ *9)a(f)z? mod zH L.

7=0

Q.
N

The corresponding erasure-locator polynomial ¥(x) € F[z] and
error-locator polynomial A(x) € Fr[z] are:

U(z) o H ( H (1- xofﬂj)>
€D jez

A(z) o H ( H (1- xaiﬁj)).
€€  jeZ

16/21



Key Equation

With ot
S(z) € U(z) - S(z) mod z#!

we obtain the following Key Equation:
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Key Equation

With ot
S(z) € U(z) - S(z) mod z#!

we obtain the following Key Equation:

S(z) = ng mod z#~!
with
deg A(x) €-dy
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Decoding up to the New Bound

Error/Erasure Decoding

Input: Received Word 7(z), Low-weight Codeword
a(x) =3 ,cz a;27 € L, Integers e and p

Prepr.: Calculate one root v; of each []; (1 - xaiﬁj) with

i JjeZ
v =B "a™t, where k € Z

1 Remove erasures from 7(z) = r(z)

N

Calculate erasure-polynomial ¥(z)

3 Calculate S(z) and §( x)

4 Obtain A(z), Q(z) from EEA(Q:“ L S(x))

5 Find all i for WhICh A(%) =

6 Save them as & = {10,11,...,25,1} and D = {i0, 81, 051}

7 Determine Error/Erasure values e;,,€;,,...,¢e;._, and d;,, ds,, ..., dis_,
8 &(x) < Y ,czei’ and c?(x) D epdiw

oz) « r(z) —e(z) — d(x)

Output: Estimated codeword ¢(z)

18/21



@ Conclusion and Outlook
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The concept of the non-zero-locator code was extended to
combined error/erasure decoding:

e A modified Key Equation was derived and
@ The EEA can be used to solve it.




Conclusion and Outlook

The concept of the non-zero-locator code was extended to
combined error/erasure decoding:

e A modified Key Equation was derived and
@ The EEA can be used to solve it.

@ Further investigation of “good” non-zero-locator codes.
@ Adaption to non-cyclic block codes.
@ Sub-quadratic-time modification of the EEA.
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