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Gray Maps

φZ4 : Z4 → F2
2

φZ4(0) = (00)

φZ4(1) = (01)

φZ4(2) = (11)

φZ4(3) = (10)



Gray Maps

φR1(a+ bu1) = (b, a+ b)

φRk
(a+ buk) = (φRk−1

(b), φRk−1
(a) + φRk−1

(b))
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φAk
(a+ buk) = (φAk−1
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(a) + φAk−1
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The maps φRk
and φAk

are linear but the map φZ4 is not.
The Lee weight is the Hamming weight of its binary image.
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Inner Products

Over Ak , the Euclidean inner product is:

[v,w] =
∑

viwi

and the Hermitian is

[v,w]H =
∑

viwi

where vi = 1 + vi .



Theorem
If C is a formally self-dual code over Z4,Rk or Ak then the image
under the corresponding Gray map is a binary formally self-dual
code.



Major Result

Theorem
Let C be an odd formally self-dual binary code of even length n.
Let C0 be the subcode of even vectors. The code
C = 〈{(0, 0, c) | c ∈ C0} ∪ {(1, 0, c) | c ∈ C − C0}, (1, 1, 1)〉 is an
even formally self-dual code of length n+2 with weight enumerator
WC = x2WC0,0(x , y)+xyWC1,0(x , y)+y2WC0,0(y , x)+xyWC1,0(y , x).
The code
C = 〈{(0, 0, c) | c ∈ C0} ∪ {(1, 1, c) | c ∈ C − C0}, (1, 0, 1)〉 is an
odd formally self-dual code of length n+2 with weight enumerator:
WC = x2WC0,0(x , y)+y2WC1,0(x , y)+xyWC0,0(y , x)+xyWC1,0(y , x).
Moreover, any code with these weight enumerators is a formally
self-dual code.



Outline of Proof

I Let C be an odd formally self-dual code.

I There exists a vector t such that C = 〈C0, t〉, where C0 is the
subcode of even vectors.

I Cα,β = C0 + αt+ β1.

I C⊥ = D and let D0 be the subcode of D of even vectors.

I There exists a vector t′ such that D = 〈D0, t′〉.
I Dα,β = D0 + αt′ + β1.
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Outline of Proof

I C =
⋃
(vα,β,Cα,β)

I D =
⋃
(wα,β,Dα,β)

I We need [vα,β,wα′,β′ ] = [Cα,β,Dα,β].

I To insure linearity we need vα,β = αv1,0 + βv0,1 and
wα,β = αw1,0 + βw0,1.

I v1,0 = (1, 0), v0,1 = (1, 1) and w1,0 = (0, 1), v0,1 = (1, 1)

I WC = WD =
x2WC0,0(x , y)+ xyWC1,0(x , y)+ y2WC0,0(y , x)+ xyWC1,0(y , x).

I C and D are formally self-dual
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for all k .

I Linear odd formally self-dual codes exist over Z4 and Rk for
all lengths greater than 1.
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Formally self-dual codes

Let 2 be the all 2 vector in Zn
4, u1u2 . . .uk be the all u1u2 . . . uk

vector in Rn
k and 1 be the all one-vector (over any ring). Note that

the Gray image of these vectors is the binary all-one vector.

Theorem
Let C be a formally self-dual code. The code C is even over Z4 if
and only if 2 ∈ C. The code C is even over Rk if and only if
u1u2 . . .uk ∈ C. The code C is even over Ak if and only if 1 ∈ C.
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Formally self-dual codes

Theorem
Let C be an odd formally self-dual code over Ak or Z4 of length n.
Then C is a neighbor of an even formally self-dual code.



Importance of these codes

I Formally self-dual codes over Rk produce binary formally
self-dual codes that have k distinct automorphisms

I Formally self-dual codes over Z4 produce non-linear formally
self-dual codes which may have higher minimum distance than
any linear formally self-dual codes.

I A formally self-dual code over Ak can be constructed using
any 2k−1 binary codes.
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