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Introduction

We study the divisibility by 3k of Klosterman sums K(a) over
finite fields of characteristic 3.

We give a simple recurrent algorithm for finding the largest k, such
that 3k divides the Kloosterman sum K(a).
This gives a simple description of zeros of such Kloosterman sums.
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Introduction

Let F = F3m be a field of characteristic 3 of order 3m, where
m ≥ 2 is an integer and let F∗ = F \ {0}.

By F3 denote the field,
consisting of three elements. For any element a ∈ F∗ the
Klosterman sum can be defined as

K(a) =
∑
x∈F

ωTr(x+a/x), (1)

where ω = exp{2πi/3} is a primitive 3-th root of unity and

Tr(x) = x+ x3 + x3
2

+ · · ·+ x3
m−1

. (2)

Recall that under x−i we understand x3
m−1−i, avoiding by this

way a division into 0.
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Introduction

Divisibility of ternary Klosterman sums K(a) by 9 and by 27 was
considered in several recent papers

van der Geer G. & van der Vlugt M. [1991]
Lisonek P. [2008]
Moisio M. [2008]
Lisonek P. & Moisio M.[2011]
Ǵ’oloğlu F., McGuire G., & R. Moloney R. [2011]
In (Ahmadi O. & Granger R. [2011]) an efficient deterministic
(recursive) algorithm was given proving divisibility of Klosterman
sums by 3k.
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Ǵ’oloğlu F., McGuire G., & R. Moloney R. [2011]

In (Ahmadi O. & Granger R. [2011]) an efficient deterministic
(recursive) algorithm was given proving divisibility of Klosterman
sums by 3k.



On Klosterman sums over finite fields of characteristic 3 5/18

Introduction

Divisibility of ternary Klosterman sums K(a) by 9 and by 27 was
considered in several recent papers
van der Geer G. & van der Vlugt M. [1991]
Lisonek P. [2008]
Moisio M. [2008]
Lisonek P. & Moisio M.[2011]
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Introduction

Here we simplified some of results, given in the above papers.

In particular, we give a simple test of divisibility of K(a) by 27.
We suggest also a recursive algorithm of finding the largest divisor
of K(a) of the type 3k which does not need solving of cubic
equation as in (Ahmadi O. & Granger R. [2011]), but only
implementation of arithmetic operation in F.
For the case when m = g h we derive the exact connection
between the divisibility by 3k of K(a) in F3g , a ∈ F3g , and the
divisibility by 3k

′
of K(a) in F3gh .
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Known results

Our interest is the divisibility of such sums by the maximal possible
number of type 3k (i.e. 3k divides K(a), but 3k+1 does not divide
K(a); in addition, when K(a) = 0 we assume that 3m divides
K(a), but 3m+1 does not divide).

For a given F and any a ∈ F∗ define the elliptic curve E(a) as
follows:

E(a) = {(x, y) ∈ F× F : y2 = x3 + x2 − a}. (3)

The set of F-rational points of the curve E(a) over F forms a finite
abelian group, which can be represented as a direct product of a
cyclic subgroup G(a) of order 3t and a certain subgroup H(a) of
some order s (which is not multiple to 3):
E(a) = G(a)×H(a), such that

|E(a)| = 3t · s

for some integers t ≥ 2 and s ≥ 1 (Enge [1991]), where s 6≡ 0
(mod 3).
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Known results

Moisio [2008] showed that

|E(a)| = 3m +K(a), (4)

where |A| denotes the cardinality of a finite set A.

Therefore a Kloosterman sum K(a) is divisible by 3t, if and only if
the number of points of the curve E(a) is divisible by 3t.
Lisonek [2008] observed, that |E(a)| is divisible by 3t, if and only if
the group E(a) contains an element of order 3t.
Since |E(a)| is divisible by |G(a)|, which is equal to 3t, then
generator elements of G(a) and only these elements are of order 3t.
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Known results

Let Q = (ξ, ∗) ∈ E(a). Then the point P = (x, ∗) ∈ E(a), such
that Q = 3P exists, if and only if the equation

x9 − ξx6 + a(1− ξ)x3 − a2(a+ ξ) = 0.

has a solution in F.

This equation is equivalent to equation

x3 − ξ1/3x2 + (a(1− ξ))1/3x− (a2(a+ ξ))1/3 = 0. (5)

The equation (5) is solvable in F if and only if

Tr

(
a
√
ξ3 + ξ2 − a
ξ3

)
= 0 . (6)
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Known results

Since the point (a1/3, a1/3) belongs to G(a) and has order 3, then
solving the recursive equation

x3i − x
1/3
i−1x

2
i + (a(1− xi−1))1/3xi

−(a2(a+ xi−1))
1/3 = 0, i = 0, 1, ...

}
(7)

with initial value x0 = a1/3, we obtain that the point
(xi, ∗) ∈ G(a) for i = 0, 1, . . . , t− 1, and the point (xt−1, ∗) is a
generator element of G(a).

Such algorithm of finding of cardinality of G(a) was given in
(Ahmadi O. & Granger R. [2011]).
Similar method was presented in our previous paper
(Bassalygo-Zinoviev [2011]) for finite fields of characteristic 2.
Besides, some another results have been obtained in
(Bassalygo-Zinoviev [2011]) for the case p = 2.
Our purpose here is to generalize these results for finite fields of
characteristic 3.
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New results

We begin with simple result. It is known (van der Geer - van der
Vlugt [1991], Lisonek-Moisio [2011]) that 9 divides K(a) if and
only if Tr(a) = 0.

In this case a can be presented as follows:
a = z27 − z9, where z ∈ F, and, hence x0 = a1/3 = z9 − z3 (see
(7)). We found the expression for the next element x1, namely:

x1 = z2(z + 1)(z2 + 1)(z − 1)4

and, therefore, from condition (6), the following result holds.

Statement 1.

Let a ∈ F∗ and Tr(a) = 0, i.e. a can be presented in the form:
a = z27 − z9. Then

x0 = z9 − z3, x1 = z2(z + 1)(z2 + 1)(z − 1)4,

and, therefore, K(a) is divisible by 27, if and only if

Tr

(
z5(z − 1)(z + 1)7

(z2 + 1)3

)
= 0, (8)
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New results

This condition (8) is less bulky than the corresponding condition
from the paper (Ǵ’oloğlu-McGuire-Moloney [2011]), where it is
proven that K(a) is divisible by 27, if Tr(a) = 0 and

2
∑

1≤i,j≤m−1
a3

i+3j +
∑

1≤i 6=j 6=k≤m−1
a3

i+3j+3k = 0.

Similar to the case p = 2 (Bassalygo-Zinoviev [2011]), we give now
also another algorithm to find the maximal divisor of K(a) of the
type 3t, which does not require solving of the cubic equations (5),
but only consequent implementation of arithmetic operations in F.
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New results

Let a ∈ F∗ be an arbitrary element and let u1, u2, . . . , u` be a
sequence of elements of F, constructed according to the following
recurrent relation (compare with (7):

ui+1 =
(u3i − a)3 + au3i

(u3i − a)2
, i = 1, 2, . . . , (9)

where (u1, ∗) ∈ E(a) and

Tr

(
a
√
u31 + u21 − a
u31

)
6= 0 . (10)

Then the following result is valid.
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New results

Theorem 1.

Let a ∈ F∗ and let u1, u2, . . . , u` be a sequence of elements of F,
which satisfies the recurrent relation (9), where the element u1
satisfies (10). Then there exists an integer
k ≤ m such that one of the two following cases takes place:

(i) either uk = a1/3, but all the previous ui are not equal to a1/3;
(ii) or uk+1 = uk+1+r for a certain r and all ui are different for
i < k + 1 + r.
In the both cases the Kloosterman sum K(a) is divisible by 3k and
is not divisible by 3k+1.
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New results

Directly from Theorem 1 we obtain the following necessary and
sufficient condition for an element a ∈ F∗ to be a zero of the
Kloosterman sum K(a) (recall that the field Fq is of order
q = 3m).

Corollary 2.

Let a ∈ F∗ and u1, u2, . . . , u` be the sequence of elements of F,
which satisfies the recurrent relation (9), where the element u1
satisfies (10). Then K(a) = 0, if and only if um = a1/3, and
ui 6= a1/3 for all 1 ≤ i ≤ m− 1.
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New results

Assume now that the field Fq of order q = 3m is embedded into
the field Fqn (n ≥ 2), and a is an element of F∗q .

Recall that

Trqn→q(x) = x+ xq + xq
2

+ . . .+ xq
n−1

, x ∈ Fqn ,

and ω is a primitive 3-th root of unity. For any elements a ∈ Fq

and b ∈ Fqn define

e(a) = ωTr(a), en(b) = ωTr(Trqn→q(b)).

For a given a ∈ F∗q it is possible to consider the following two
Kloosterman sums:

K(a) =
∑
x∈Fq

e
(
x+

a

x

)
,

Kn(a) =
∑

x∈Fqn

en

(
x+

a

x

)
.
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New results

Denote by H(a) the maximal degree of 3, which divides K(a), and
by Hn(a) the maximal degree of 3, which divides Kn(a).

There exists a simple connection between H(a) and Hn(a).

Theorem 3.

Let n = 3h · s, n ≥ 2, s ≥ 1, where 3 and s are mutually prime,
and a ∈ F∗q . Then

Hn(a) = H(a) + h.

From Theorem 3 we immediately obtain the following known result
due to Lisonek and Moisio [2011].

Corollary 4.

Let a ∈ F∗q and n ≥ 2. Then Kn(a) is not equal to zero.
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