Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory
June 15-21, 2012, Pomorie, Bulgaria pp. 47-52

One more way for counting monotone Boolean
functions!

VALENTIN BAKOEV v.bakoevQuni-vt.bg
University of Veliko Turnovo, Bulgaria

Abstract. Here we represent the outline of a new algorithm for counting the
monotone Boolean functions of n variables. It is a continuation of our previous
investigation and results, related to this problem.

1 Introduction

In 1897 Dedekind sets the problem of counting the elements of free distributive
lattices of n generators, or equivalently, the number ¥ (n) of monotone Boolean
functions (MBF's) of n variables. Since then the scientists investigate this prob-
lem in two main directions. The first one is to compute this number for a given
n — by deriving appropriate formulas for it, or by algorithms for counting, etc.
The second (when the first one is not successful enough) is to estimate this
number — many formulas for evaluating ¢)(n) are obtained in [5-8]. In spite of
their efforts, the values of 1(n) are known only for n < 8 [4,11,12]:

n p(n) Computed by
0 2 R. Dedekind, 1897
1 3 R. Dedekind, 1897
2 6 R. Dedekind, 1897
3 20 R. Dedekind, 1897
4 168 R. Dedekind, 1897
5 7581 R. Church, 1940
6 7828 354 M. Ward, 1946
7 2414682040998 R. Church, 1965
8

56130437228 687557907788 | D. Wiedemann, 1991

Table 1. ¥(n), for 0 <n < 8, and the history of their computing.

To feel the complexity of the problem we note that in 1991 Wiedemann
used a Cray-2 processor for about 200 hours to compute 1 (8). It took almost
a century to compute the last 4 values of ¥ (n).

The algorithms for computing 1(n) that we know, are not too numerous and
various. Most of them follow the principle ”generating and counting” [3,4,9,
10]. The algorithms in [11] use propositional calculus and #SAT-algorithms in
computing these numbers. The most powerful algorithms (represented in [4,12])
compute 1(8) by appropriate decomposition of functions and/or sets.

!This work is partially supported by V. Turnovo University Science Fund under Contract
RD-642-01/26.07.2010.

48 ACCT2012

This work continues our previous investigations of the Dedekind’s problem.
In [1,2] we proposed a new algorithm for generating (and counting) all MBFs
up to 6 variables, based on the properties of a certain matrix structure. In
spite of its numerous improvements (the running-time for computing 1 (6) was
reduced to 0,5 sec.), it is not powerful enough for computing the next values.
Here we represent some new ideas about applying the dynamic-programming
strategy in solving the Dedekind’s problem.

2 Basic notions and preliminary results

Let {0,1}"™ be the n—dimensional Boolean cube and o = (ay,...,ay), § =
(b1,...,b,) be binary vectors in it. Ordinal number of « is the integer #(a) =
a1.2" ' 4 a9.2" 2 4 ... +a,.2°. Vector a precedes lexicographically vector 3, if
J an integer k,1 < k < n, such that a; = b;, fori =1,2,..., k—1, and ap < by,
or if @ = 3. The vectors of {0,1}" are in lexicographic order (as we consider
further) iff their ordinal numbers form the sequence 0,1,...,2" — 1.

The relation ” <” is defined over {0, 1}" x {0, 1}" as follows: o < G if a; < b;,
for i = 1,2,...,n. This relation is reflexive, antisymmetric and transitive and
so {0,1}" is a partially ordered set (POSet) with respect to it. When o < 3 or
0 = «a we call a and 8 comparable, otherwise they are incomparable.

A Boolean function f of n variables is a mapping f : {0,1}" — {0,1}.
The function f is called monotone if for any o, € {0,1}", a < [implies
fla) < f(B). It is well known that if f is a monotone function, it has an unique
minimal disjunctive normal form (MDNF), consisting of all prime implicants
of f, where all literals are uncomplemented.

We define a matriz of precedences of the vectors in {0, 1}" as follows: M,, =
||m; ;|| has dimension 2™ x 2", and for each pair of vectors a, 5 € {0,1}", such
that #(a) = ¢ and #(8) = j, we set m; j = 1 if o < 3, or m; j = 0 otherwise.

Theorem 1. The matriz M, is a block matriz, defined recursively, or by Kro-
necker product:

_ 11 _ Mn—l Mn—l _ _ -
Ml—(01>7 Mn—(()n_lm_1) or Mn—Ml®Mn,1—(§)Ml,

where M,_1 denotes the same matriz of dimension 271 x 2"~ 1 and O,_1 is
the 21 x 2"~ zero matriz.

Theorem 2. Let a = (ay,az,...,a,) € {0,1}", #(a) =1, 1 < i < 2" -1,
and « has ones in positions (i1,i2,...,i,), 1 < r < n. Then the i-th row
r; of the matriz M, is the vector of functional values of the prime implicant
Ci = Tj Tiy - . . Ti,., 1.€. 1S a characteristic vector of the literals in c;, which is
a monotone function. When #(«) = 0, the zero row of My, corresponds to the
constant 1.

Bakoev 49

a = (x1,x2,23) | i = #(a) Ms; ci
(0 00) 0 1111 11111
(001) 1 0101 0101 | 3
(010) 2 0011 0011 |
(011) 3 0001 0001 | xoxs
(100) 4 0000 1111 |
(101) 5 0000 0101 | 23
(110) 6 0000 0011 |z
(111) 7 0000 0001 | zyaoxs

Table 2. Illustration of the assertion of Theorem 2, for n = 3.

So the vector of any monotone function f can be expressed in terms of a
linear combination f(x1,x9,...,x,) = agro V airy V -+ V agn_17r9n_1, where
r; is the i-th row of the matrix M, and its coefficient a; € {0,1}, for i =
0,1,...,2" — 1. In other words, M, plays the role of a generator matrix for the
set of all MBFs of n variables. When f(z1,22,...,2,) = ri; V13, V -+ V 1y,
corresponds to a MDNF of f, then any two rows r;; and ;, (corresponding to
the prime implicants ¢;; and ¢;;), 1 < j <1 < k, are pairwise incomparable.

Our algorithm, called GEN, generates all MBFs of n variables, 1 <n <7,
as vectors in lexicographic order. It is based on the properties of the matrix
M,, (more details are given in [1]).

Algorithm: GEN.

Input: the number of the variables n.

Output: the vectors of all MBFs of n variables in lexicographic order.
Procedure:

1) Generate the matrix M,,.

2) Set f =(0,0,...,0) — the zero constant. Output f.

3) For each row r; of M,, i=2"—1,...,0, set f =r; and:

a) output f;

b) for each position j, j = 2" — 2,2" — 3,...,i + 1, check whether
fl7] = 0, i.e. whether the i-th and the j-th rows are incomparable. If ”Yes”
then set (recursively) f = f VvV r; and go to step 3.a.

4) End.

The essential part of its code (steps 3.a and 3.b), written in C, looks like
this:

void Gen_I (bool G[], int i) {
bool H [Max_Dim];

for (int k=i; k<N; k++) // N= 2°n is a global variable
Hlk]= G[k] || M[i][x]; // M is M_n
Print (H);

for (int j= N-1; j>i; j-—-) // step 3.b
if ('H[j]) Gen_I (H, j);

50 ACCT2012

3 Outline of an algorithm for counting MBF's

While trying to improve and speed-up the algorithm GEN, we observe that the same
subfunctions are generated many times in the different iterations of the main cycle in
GEN. Their number grows extremely fast when the number of variables grows. So
we shall concentrate on counting that avoids generating. We set the problem ”Let
the value of the cell m; ; in matriz M, be 0, for a given n. How many MBFs can be
obtained by disjunction of row r; and all possible rows (one or more than one), having
indices > j?”. To solve this problem (for n < 7) we modify the algorithm GEN and
its new version we call GEN_Cell. So we add to the function Gen_I a parameter for
the depth of the recursion, and also a counter for the generated functions (when the
depth is 0 we return the value of this counter for storing and then set it to 0 for the
next recursive call). The integers computed in this way we store in a 2" x 2™ matrix
denoted by Res,, which elements are set to 0 initially. We have to fill only these cells
of Res,,, which correspond (i.e. have the same indices) to zero elements above the main
diagonal in M,,. For example, the results for n = 4 are given in Table 3.

My TOW Resy S;
11111111 11111111 0| 00000 OO0 0O0OO0OOOOO 1
01010101 01010101 1100503 050 10201010 19
00110011 00110011 2100003 500 12001100 14
00010001 00010001 310000520110 15301210 50
00001111 00001111 4100000 000 12110000 6
00000101 00000101 5100000 0110 15231010 25
00000011 00000011 6 | 00000 000 14331100 14
00000001 00000001 7100000 000 15351210 19
00000000 11111111 81 00000 000 00O0O000OO0OO 1
00000000 01010101 9100000 000 00201010 5
00000000 00110011 10 | 00000 0 00 00001100 3
00000000 00010001 11 { 00000 000 00001210 5
00000000 0OOOO1111 12 | 00000 000 0000000O 1
00000000 00000101 131 00000 000 000O00O0O1O0 2
00000000 00000011 14 | 00000 0 00 000000O0O 1
00000000 00000001 15 00000 000 00000O0O0OO 1

Total: S = 167

Table 1: My, Ress and s; — the number of MBFs on rows.

We can see that the same submatrices in My or, more precisely, certain shapes of
zeros in them, correspond to the same shapes of non-zero values in the matrix Resy.
Obviously, this is due to the recursively defined block structure of the matrix M,
the nature of generating and hence the nature of the algorithm GEN. This fact can
be proved rigorously by induction on n and it demonstrates the property overlapping
subproblems — one of the key ingredients that enables us to apply the dynamic program-
ming strategy. The same is valid for the other key property — optimal substructure.
Indeed, if (for a given n) the subproblems are solved, i.e. the necessary values are
computed and stored in the matrix Res,, we can obtain the solution of the problem
(i.e. to find ¢(n)) as follows:

(1) sum the numbers in the i-th row of the matrix Res,, and add 1 (because every

Bakoev 51

row of M, is in itself a monotone function). Denote this sum by s;,i =0,1,...,2" —1;

(2) compute the sum S = 222:51 S84

(3) set ¢(n) =S + 1 (since the constant 0 is yet not counted) and return it.

For example, the last column of Table 3 contains the sums s; of the elements of
each row mentioned in (1). If we take the sum s14 + s15 + 1 (since M is placed in the
lower right corner of M), we obtain 3 = ¢(1). If we do the same for the last 4 rows:
s12+ -+ 815 + 1 (since Mo is also placed in the lower right corner of My), we obtain
6 = 1(2). For the the last 8 rows, we obtain sg + -+ s15 + 1 = 20 = ¢(3), and finally,
for all rows, we obtain sg +---+s15 +1=5+1 =168 = ¥ (4).

The next improvement of algorithm GEN_Cell seems obvious: after computing the
value of Res,(i,7), we copy it in the corresponding cells of the same shapes above —
so we prevent from solving the same subproblems more than once. Even so, executing
GEN_Cell for one cell only can cause generating many subfunctions, which have been
already generated. Their memorization can take a large amount of memory, and our
goal is to restrict the generating as possible. We continue with our next idea. Assume
that ¢ < j, M,(i,j) = 0 and Res,(i,j) = 0. We need to compute the value of
Res,(i,7), i.e. to count all MBFs, which are disjunction of i-th row of M, with all
rows of M,,, having indices > j. All cells of the i-th row from the j-th cell to the last
one we consider as a vector and denote it by (Oa). Analogously for the j-th row, all
cells from the j-th to the last cell we consider as a vector and denote it by (13). For
a and § we have 3 cases: (1) o < 3; (2) f < «, and (3) a and 8 are incomparable.
Using the properties of the matrix M,, and the above arguments we can prove:

Proposition 1. Case (1): if « < 3 then Res,(i,j) =1 +Zi1;41»1 Resp(j, k) =s;+1.

Proposition 2. Case (2): if 5 < a then Resy(i,5) =1+ Zilﬁ_l Res, (i, k).

Suppose we want to compute Res, (i,j) and we have already computed Res,, (i, k)
and Res,(j, k), for k=7+1,...,2" = 1. If « X B or 8 < «, we apply Proposition 1 or
2, respectively. For the third case we use GEN_Cell, since we have not found a better
algorithm (or a formula) till now.

Next proposition follows directly from the definition of matrix M,,.

Proposition 3. For a given n, the matrix M,, contains 4™ elements and:
1) 3™ of them are equal to 1 and they are placed on the main diagonal or above it;
2) all (4" —2")/2 elements under the main diagonal are zeros, and also (4™ —2.3"+
2")/2 zeros are placed above the main diagonal.

So our algorithm has to compute and fill in (4" — 2.3™ 4+ 2™)/2 numbers in the
cells of Res,,. Some of these numbers are obtained in accordance with the considered 3
cases. The rest of them are simply copies of numbers already computed. Experimental
results for the number of the cells in each case, for n = 6,7, 8, are given in Table 4.

4 Conclusions

The results in Table 4 seem to be optimistic, especially if we compare them with the
values of 1(n), given in Table 1. The main and still open problem is to develop an

52

ACCT2012
n| (4" —23"+2")/2 | Incase 1 | In case 2 | In case 3 | Copies
6 1351 211 26 544 570
7 6069 665 57 2645 2702
8 26335 2059 120 12018 | 12138

Table 2: Number of cells from each case in the matrix Res,,.

efficient way for computing in Case 3. Some secondary problems also have to be solved
— for example, representation and summation of long integers, efficient usage of the
memory, especially for the matrices M,, and Res,, etc. Their efficient solutions will
decrease essentially the running-time for computing ¥(7) and ¥(8) and may allow us
to compute ¥(9) in a reasonable time.

References

[1]

2]

V. Bakoev, Generating and identification of monotone Boolean functions, Math-
ematics and education in mathematics, Sofia (2003), pp. 226-232.

V. Bakoev, Some properties of one matrix structure at monotone Boolean func-
tions, Proc. EWM Intern. Workshop Groups and Graphs, Varna, Bulgaria (2002),
pp- H-8.

J. Dezert, F. Smarandache, On the generation of hyper-powersets for the DSmT,
Proc. of the 6th Int. Conf. of Information Fusion (2003), pp. 1118-1125.

R. Fidytek, A. Mostowski, R. Somla, A. Szepietowski, Algorithms counting mono-
tone Boolean functions, Inform. Proc. Letters 79 (2001), pp. 203-209.

A. Kisielewicz, A solution of Dedekinds problem on the number of isotone Boolean
functions, J. reine angew. math., Vol. 386 (1988) pp. 139-144.

D. Kleitman, On Dedekinds problem: the number of monotone Boolean functions,
Proc. of AMS, 21(3) (1969), pp. 677-682.

A. Korshunov, On the number of monotone Boolean functions, Problemy Kiber-
netiki, Vol. 38, Moscow, Nauka (1981), pp. 5-108 (in Russian).

A. Korshunov, I. Shmulevich, On the distribution of the number of monotone

Boolean functions relative to the number of lower units, Discrete Mathematics,
257 (2002), pp. 463-479.

http://mathpages.com/home/kmath094.htm, Generating the M. B. Functions
http://angelfire.com/blog/ronz/, Ron Zeno’s site

M. Tombak, A. Isotamm, T. Tamme, On logical method for counting Dedekind
numbers, Lect. Notes Comp. Sci., 2138, Springer-Verlag (2001), pp. 424-427.

D. Wiedemann, A computation of the eighth Dedekind number, Order, no. 8
(1991), pp. 5-6.

