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Abstract. We classify up to multiplier equivalence optimal (v, 3, 1) binary cyclically
permutable constant weight (CPCW) codes with v ≤ 61. There is a one-to-one cor-
respondence between optimal (v, 3, 1) CPCW codes, optimal cyclic binary constant
weight codes with weight 3 and minimal distance 4, (v, 3; b(v − 1)/6c) difference
packings, and optimal (v, 3, 1) optical orthogonal codes. Therefore the classification
of CPCW codes holds for them too.
Some of the classified (v, 3, 1) CPCW codes are perfect and they are equivalent
to cyclic Steiner triple systems of order v (STS(v)) and (v, 3, 1) cyclic difference
families. This way we obtain a classification of cyclic STS(61) and (61, 3, 1) cyclic
difference families which is new.

1 Introduction

An (n, d, w) code is a binary code of length n and minimum Hamming distance
d, whose codewords have constant weight w. These codes are called constant
weight and have been extensively studied (see for instance [4]). One of the most
interesting classes of these codes are the constant weight cyclically permutable
codes. Cyclically permutable codes were first defined by Gilbert [10]. In a
cyclically permutable code (CPC) all codewords are cyclically distinct and have
full cyclic order. Such codes are not only suitable for error-correction but
also for synchronization and multiple access, mobile radio, frequence-hopping
spread spectrum communications, radar and sonar signal design. A cyclically
permutable constant weight (CPCW) code is a code which is both constant
weight and CPC. These codes were studied in [3], [12], [13], and can be used for
the construction of protocol sequences for a multiuser collision channel without
feedback. They are also called optical orthogonal codes in connection with
applications for optical code-division multiple-access channels.

2 Basic definitions

For the basic concepts and notations concerning the classified combinatorial
objects we follow [5], [8] and [12]. We denote by Zv the ring of integers modulo
v and by ⊕ and ¯ addition and multiplication in it.
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A (v, k, λ) binary cyclically permutable constant weight (CPCW) code C is
a collection of {0, 1} sequences of length v and Hamming weight k such that:

v−1∑

i=0

x(i)x(i⊕ j) ≤ λ, 1 ≤ j ≤ v − 1 (1)

v−1∑

i=0

x(i)y(i⊕ j) ≤ λ, 0 ≤ j ≤ v − 1 (2)

for all pairs of distinct sequences x, y ∈ C. The same definition holds for a
(v, k, λ) optical orthogonal code.

A (v, k, λ) binary cyclically permutable constant weight (CPCW) code can
also be defined as a collection C = {C1, . . . , Cs} of k-subsets (codeword-sets or
blocks) of Zv, such that any two distinct translates of a block share at most λ
elements, and any two translates of two distinct blocks also share at most λ
elements:

|Ci ∩ (Ci ⊕ t)| ≤ λ, 1 ≤ i ≤ s, 1 ≤ t ≤ v − 1 (3)
|Ci ∩ (Cj ⊕ t)| ≤ λ, 1 ≤ i < j ≤ s, 0 ≤ t ≤ v − 1 (4)

Condition (1) or (3) is called the auto-correlation property and (2) or (4)
the cross-correlation property. The size of C is the number s of its blocks.

Consider a block C = {c1, c2, . . . , ck}. Denote by 4′C the multiset of the
values of the differences ci−cj , i 6= j, i, j = 1, 2, . . . , k. The auto-correlation
property means that at most λ differences are the same. In particular all the
differences of a block of a (v, k, 1) CPCW code are different. For λ = 1 the
cross-correlation property means that ∆C1

⋂
∆C2 = ∅ for two blocks C1 and

C2.
A (v, k, λ) difference family is a set C = {C1, . . . , Cs} where Ci = {ci1 , ci2 , . . . ,

cik} are k-element subsets of Zv, such that each nonzero element of Zv is ob-
tained exactly λ times as a difference cij − cil for 1 ≤ i ≤ s and 1 ≤ j 6= l ≤ k

Let V = {Pi}v
i=1 be a finite set of points, and B = {Bj}b

j=1 a finite collection
of k-element subsets of V , called blocks. D = (V,B) is a design with parameters
t-(v,k,λ) if any t-subset of V is contained in exactly λ blocks of B. A 2-(v,3,1)
design is also called a Steiner triple system and denoted by STS(v).

A t-(v,k,λ) design is cyclic if it has an automorphism α permuting its points
in one cycle, and it is strictly cyclic if each block orbit under this automorphism
is of length v (no short orbits).

Two (v, k, λ) CPCW codes C and C ′ are isomorphic if there exists a per-
mutation of Zv, which maps the collection of translates of each block of C to
the collection of translates of a block of C ′.

The automorphisms of the cyclic group of order v map each circulant matrix
of order v to a circulant matrix of order v. That is why multiplier equivalence
is defined for cyclic combinatorial objects.
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Two (v, k, λ) CPCW codes are multiplier equivalent if they can be obtained
from one another by an automorphism of Zv and replacement of blocks by some
of their translates.

Two cyclic 2-(v, k, λ) designs (partial designs) D and D′ are multiplier equiv-
alent if there exists an automorphism of Zv which maps each block of D to a
block of D′.

Two CPCW codes (cyclic designs) can be isomorphic, but multiplier in-
equivalent.

Let Φ(v, k, λ) be the largest possible size of a (v, k, λ) CPCW code. For
codes with λ = 1 we have the following upper bound [7]

Φ(v, k, 1) ≤
⌊

v − 1
k(k − 1)

⌋
.

CPCW codes which reach this bound are called optimal. If the size is exactly
(v − 1)/k(k − 1), the (v, k, 1) CPCW code is called perfect and corresponds to
a cyclic 2-(v, k, 1) design and to a cyclic (v, k, 1) difference family.

3 Motivation and main results

There exists an optimal (v, 3, 1) CPCW code if and only if v 6≡ 14 or 20 (mod 24)
[1], [7]. Except for direct applications, (v, 3, 1) CPCW codes can also be used
in constructions of CPCW codes with other parameters [7]. Sometimes for
the construction of new infinite families, CPCW codes with certain parameters
and some additional properties are needed and classification results can be very
useful. In this sense classification results for CPCW codes of small lengths might
contribute to future investigations on codes with other higher parameters.

We do not know classification results for (v, 3, 1) CPCW codes, but there
are classification results for cyclic Steiner triple systems of order v (STS(v))
with v ≤ 57 [9], namely for v = 19, 21, 25, 27, 31, 33, 37, 39, 43, 45, 49, 51, 55,
and 57. Among them the designs with v = 19, 25, 31, 37, 43, 49, and 55 are
strictly cyclic and equivalent to (v, 3, 1) CPCW codes, while the designs with
v = 121, 27, 33, 39, 45, 51, and 57 have one short orbit. Steiner triple systems
are a particularly interesting class of designs with many different applications
in Coding Theory (see for instance [14] for their connection with perfect codes).

In the present paper we classify up to multiplier equivalence optimal (v, 3, 1)
CPCW codes with v ≤ 61. To the existing classification results for cyclic
STS(v) we add v = 61. We also repeat the classification of cyclic STS(v) for
v ≤ 57.

4 Algorithm

Our algorithm is essentially different from those considered in [6], and [7] since
our aim is not only to find one optimal CPCW code for each v, but to make a
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classification too. We use a slight modification of the algorithm used in [2]. To
classify optimal CPCW codes and cyclic designs up to multiplier equivalence we
first order all the possibilities for blocks with respect to both lexicographic order
and the action of the automorphisms of the cyclic group of order v, and then
apply back-track search with minimality test on the partial solutions [11, section
7.1.2]. In this case the minimality test rejects the current partial solution if some
of the automorphisms of Zv can map it to a lexicographically smaller solution
(that has already been constructed).

5 Classification results

We present in Table 1 the results of the classification up to multiplier equiv-
alence of optimal (v,3,1) CPCW codes with 13 ≤ v ≤ 61. The value of v is
followed by p if the codes are perfect. As usual the number of blocks is denoted
by s. If an optimal code does not exist for this length, a result about the codes
of maximal size is presented and the value of v is followed by m. Files with
all (v, 3, 1) CPCW codes we construct can be obtained from the authors upon
request.

All computer results are obtained by our own C++ programs. For the
number of perfect CPCW codes we obtain exactly the number of the related
cyclic STS(v) with v ≤ 57, presented in [9]. From the classification of perfect
(61, 3, 1) CPCW codes we obtain 42373196 inequivalent cyclic STS(61) which
is a new result.

In a similar way we construct cyclic STS(v) with one short orbit (of length
v/3). The base block of the short orbit is {0, v/3, 2v/3}. We repeat the classifi-
cation of cyclic STS(v) designs with one short orbit for v = 15, 21, 27, 33, 39, 45,
51, and 57. The number of multiplier inequivalent designs we obtain is the same
as the number of nonisomorphic ones in [9].

The above presented complete classification of optimal (v, 3, 1) CPCW codes
with v ≤ 61 shows that for some lengths there are thousands of nonisomorphic
codes. All codes are available online to everybody who is interested and further
investigations of their properties are possible. We believe that the classified
codes will be of use both directly and as ingredients in constructions of new
infinite families.
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