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Abstract. The problem of efficient soft-decision decoding of polar codes with Reed-
Solomon kernel is considered. A decomposition of the kernel based on the cyclotomic
FFT algorithm is proposed, which enables one to implement near-optimal evaluation
of log-likelihood ratios in the successive cancellation decoding algorithm.

1 Introduction

Polar codes represent the first class of error correcting codes approaching the
capacity of a wide range of communication channels [1]. However, the rate of
polarization provided by the original Arikan kernel is quite low. As a result,
the performance of polar codes construct up to now is inferior compared to
the existing LDPC and turbo codes. It was shown in [3] that high-dimensional
kernels (in particular, those based on BCH codes) provide higher polarization
rate. This approach was further extended in [4], where non-binary polarization
kernels based on Reed-Solomon codes were proposed, which achieve the highest
possible polarization rate. This enables one to obtain better performance under
the successive cancellation decoding algorithm. However, employing this algo-
rithm essentially requires one to be able to perform SISO decoding of nested
Reed-Solomon codes.

This paper introduces a generalization of the Vardy-Be’ery decomposition
of Reed-Solomon codes, which enables one to efficiently implement this step.
The decomposition is based on the cyclotomic FFT algorithm. The paper
is organized as follows. Section 2 presents the necessary background. The
proposed SISO decoding algorithm is introduced in Section 3. Numeric results
are provided in Section 4. Finally, some conclusions are drawn.

2 Background

2.1 Polar codes

Let G be a l× l matrix over Fq. Polar code is a linear block code with generator
matrix given by some rows of G⊗L, where ⊗L denotes the L-times Kronecker
product of a matrix with itself. Polar codes were shown to be instances of
generalized concatenated and multilevel codes [5]. The encoder of a polar code
can be decomposed into a number of layers, as shown in Figure 1. Layer L
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Figure 1: Two-layer polar code based on a 4× 4 kernel

corresponds to the information symbols, while layer 0 corresponds to codeword
symbols. n− k symbols at layer L are always fixed to zero (frozen symbols).

The successive cancelation decoding algorithm computes a-posteriori dis-
tributions for the input symbols given the distributions for the symbols at
layer L− 1, and makes decisions on the values of the information symbols. As
soon as estimates for all symbols connected to a single kernel block are ob-
tained, they are re-encoded. The re-encoded symbols are used at layer L − 1
while computing the distributions for the remaining information symbols. The
distributions at layer L − 1 are recursively obtained from those at previous
layers. It can be seen that this algorithm requires one to be able to com-
pute P {vi = s|v0, . . . , vi−1} , s ∈ Fq, given the distributions of each symbol of
(w0, . . . , wl−1) = (v0, . . . , vl−1)G, where v0, . . . , vi−1 are the symbols processed
at the previous steps, i.e. their values are assumed to be known precisely.
Without loss of generality, one can assume that v0 = · · · = vi−1 = 0. Hence,
implementing the successive cancelation decoding algorithm requires employ-
ing SISO decoders for (l, l − i) linear codes generated by last l − i rows of G,
0 ≤ i < l.

2.2 Cyclotomic FFT algorithm

The discrete Fourier transform of polynomial f(x) =
∑n−1

i=0 fix
i over F2m is

given by

Fj = f(αj) =
n−1∑

i=0

fiα
ij , 0 ≤ j < n,
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where α is a primitive n-th root of unity. By constructing a linearized decom-
position

f(x) ≡
C∑

s=0

Ls(xcs) mod (xn − 1),

where Ls(y) =
∑ms−1

t=0 fcs2t mod ny2t
, cs are the leaders of cyclotomic cosets

modulo n, and cs2ms ≡ cs mod n, one can express the DFT components via
the values of Ls(y) at some basis points. It is convenient to select normal bases{

γs, γ
2
s , . . . , γ2ms−1

s

}
of F2ms ⊂ F2m . In this case one obtains

Fj = f(αj) =
C∑

s=0

Ls(αjcs) =
C∑

s=0

ms−1∑

i=0

ajsi

ms−1∑

t=0

γ2t+i

s fcs2t mod n.

This can be expressed in matrix form as [6]

F = fLA, (1)

where f is a vector of coefficients fj , re-ordered according to cyclotomic cosets,
L is a block-diagonal matrix, and A is a binary matrix. This algorithm can be
easily augmented to compute also F−∞ = f(0).

3 SISO decoding based on cyclotomic decomposition
of the Reed-Solomon kernel

The straightforward implementation of a SISO decoder for a Reed-Solomon
code would require enumerating all its codewords. More efficient implemen-
tation was proposed in [2, 7], where a cycle-free factor graph was constructed
based on a decomposition of the Reed-Solomon code into BCH codes and a
”glue” code. Due to high complexity this algorithm is not able to decode ef-
ficiently Reed-Solomon code of practical length. However, the dimension l of
polar code kernel G is usually small. Furthermore, one has to successively de-
code a sequence of l nested codes with the same input data. In this paper a
generalization of this method is proposed, which exploits the structure of the
cyclotomic FFT to obtain a decomposition of the nested Reed-Solomon code
induced by the corresponding kernel. In order to reduce the overall complexity,
only decoding of a binary image of the code is considered. This may result in
a suboptimal performance of the successive cancelation decoding algorithm for
the corresponding polar code.

Let (Λ0,0, . . . , Λm−1,0, Λ0,1, . . . ,Λm−1,l−1) be the log-likelihood ratios for
each bit wij of each symbol of vector w = (w0, . . . , wl−1) = vG, v, w ∈ Fl

2m ,
where wi =

∑m−1
j=0 wjsα

s, wjs ∈ {0, 1}, α is a primitive element of F2m , and G

is a Reed-Solomon kernel, which is in fact a DFT matrix. According to (1),
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one can also write w = vΠLA, where Π is a permutation matrix corresponding
to the re-ordering the elements of v according to cyclotomic cosets. Then one
obtains

pj,z = P
{

(vΠL)(j) = z|Λj,0, . . . , Λj,l−1

}
= B exp

(
−1

2

l−1∑

i=0

µ(zA, i)Λs,i

)
, (2)

where (y)(j) denotes the vector (yj,0, . . . , yj,l−1) ∈ Fl
2, such that y =∑m−1

j=0 (y)(j)αj , B is a normalization constant, and µ(y, i) returns 1 if yi = 1 and
−1 otherwise. Assume now that one needs to compute the a-posteriori proba-
bilities for some symbol vi, where i ≡ cs2t mod n for some t. By marginalizing
the distribution given by (2), one can obtain the probabilities

πj,s,y = P
{

(vΠL)(j,s) = y|Λj,0, . . . ,Λj,l−1

}
=

∑

z:zit=yt,it∈Is

pj,z, y ∈ Fms
2 , 0 ≤ j < m,

(3)
where Is denotes the set of columns occupied by the non-zero elements of the
s-th block of matrix L, and (y)(j,s) denotes the corresponding subvector of
(y)(j). Now one can construct a trellis corresponding to the code (possibly,
trivial) generated by the s-th block of matrix L, and use the BCJR algorithm
with input given by πj,s,y to compute the a-posteriori probabilities (or LLRs)
for each of m bits of vi. These LLR values should be used as input to this
algorithm at the subsequent layers of the successive cancelation decoder.

After the successive cancellation decoding algorithm makes decisions on
symbols v0, . . . , vi, it may happen due to block-diagonal structure of matrix L
that some parts of ẑ = vΠL vector are fixed. In this case one should set the
probabilities πj,z = 0 for all z not matching the detected elements of ẑ, and
re-normalize the remaining non-zero probabilities. Some blocks (v)(j,s) may be
detected incompletely. While the values of the known part of this vector can
be taken into account by the BCJR algorithm while processing block s, there
does not seem to be an easy way to do this while processing other blocks. This
represents another source of suboptimality of this algorithm.

It can be seen that the complexity of computing (2) is given by O(m2l)
(this step is performed only once), while the complexity of running the BCJR
algorithm for each i is given by O(2min(is,ms−is)m)ms), where is is the number
of elements of the cyclotomic coset generated by cs less than i (i.e. the number
of already detected symbols in the corresponding block).

4 Numeric results

Figure 2 presents simulation results illustrating the performance of a binary
image of the polar code with Reed-Solomon and the polar code with Arikan
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Figure 2: Performance of polar codes

kernel in AWGN channel with BPSK modulation. The Reed-Solomon kernel is
given by

G =




1 0 0 0
0 α α2 0
0 α2 α 0
0 0 0 1







0 1 1 1
0 1 0 1
0 1 1 0
1 1 1 1


 ,

where α is a primitive element of F22 . This factorization was obtained by
augmenting the cyclotomic decomposition (1) with the operations needed to
compute F−∞. The set of frozen subchannels was obtained by computer sim-
ulations. In the case of polar code over F22 transmission of its binary image
was considered. It can be seen that polar codes with Reed-Solomon kernels
outperform binary ones with Arikan kernel.

5 Conclusions

In this paper a reduced-complexity decoding algorithm for polar codes with
Reed-Solomon kernel was proposed. The algorithm essentially implements SISO
decoding of Reed-Solomon codes by exploiting the structure of the cyclotomic
FFT over finite fields. This enables one to obtain a factor graph of the code
with reduced number of nodes compared to straightforward implementation.
The proposed approach generalizes the Vardy-Be’ery decomposition, but the
obtained factor graph is not cycle free, resulting thus in suboptimal decoding.
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