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Abstract. As an extension of Reed-Solomon Code, Goppa had proposed to use
a family of fractional functions for constructing the so-called classical Goppa code
in 1970. Goppa continued to investigate the relationship between error correcting
codes and algebraic curves, and extended his idea to obtain the codes on algebraic
curves. After the moment of his works, the research on algebraic geometric codes
has been developed and several important results are published both in theoretical
and in practical point of view. One of the most theoretical results in construction
of code is codes on a projective scheme X over Fq defined using the germ map. In
case of X being a projective surface, Hansen gave a lower bound of the minimum
distance of codes defined on some irreducible curves with Fq-rational points. In this
paper, we propose a concrete construction of that type of codes over the typical
projective surface P2, then give the dimension and a lower bound of the minimum
distance which is better than Hansen’s estimation in some cases.

1 Introduction

For a fixed integers k, n with k ≤ n ≤ q, and for a subset {x1, . . . , xn} of Fq,
Reed-Solomon Code is defined as the image of the subset of polynomials of
Fq[X] with degree less than k into Fn

q under the map of substituting all the xi
to each polynomial. Although Reed-Solomon code is optimal in the sense of
Singleton bound criteria and called maximum distance separable (MDS) code,
the length of the code can not exceed the number of the elements of the base
field. In 1970, V. D. Goppa had proposed to use a family of fractional functions
for constructing the so-called classical Goppa code ([3]). Goppa continued to
investigate the relationship between error correcting codes and algebraic curves,
and extended his idea to obtain the codes on algebraic curves([4]).

The landmark of his work aroused many researchers to investigate the alge-
braic geometric codes, and several important results have been published both
in theoretical and in practical point of view. One of important results is the
existence of an infinite sequence of algebraic geometric codes which exceed the
Varshamov-Gilbert bound. These codes are constructed using modular curves
over a finite field Fq ([2]).



2 2 OVER VIEW OF SOME KNOWN RESULTS

In view of construction of code, the most general definition is by the germ
map which corresponds each global section of an invertible sheaf on a projective
scheme X to an element of Fn

q . In case that X is a projective surface, Hansen,
in [5], gave a lower bound of the minimum distance of codes defined by some
irreducible curves and an invertible sheaf corresponding to a divisor. For more
practical use, it might be necessary to obtain other important parameters and
to investigate much more properties. Lomont and Hansen, in [6], proposed to
construct Hansen’s type of code on a ruled surface over a non-singular curve
of genus g, then gave some parameters. Zampolini, in [8], investigated more
restricted case as the genus of the curve g = 1.

In this paper, we propose a concrete construction of Hansen’s type of codes
on the typical projective surface P2, and give the lower bound of the minimum
distance which is better than Hansen’s general result. The rest of this paper
proceed as follows: an over view of known results and some notes come up in
the next section, our proposed construction, estimation of some parameters of
the code, and the comparison of our code with Hansen’s general estimation are
in the following section. Then the conclusion.

2 Over view of some known results

In this section, we start with the classical Goppa code which can be interpreted
as a type of generalized Reed-Solomon code. The Reed-Solomon code was an
image of polynomials over Fq of degree less than k, and it is extended to a
family of codes whose length n and minimum distance at last n − k + 1 using
fixed vectors α = (α1, . . . , αn) and v = (v1, . . . , vn), where αi’s are distinct
elements and vi’s are non-zero elements of Fqm . The generalized Reed-Solomon
code, GRSk(α, v), is defined as a set of all the images of polynomial f(X) of
Fqm [X] with degree less than k, that is

(v1f(α1), v2f(α2), . . . , vnf(αn)).

For a polynomial g(X) ∈ Fqm [X] with g(αi) ̸= 0 (i = 1, . . . , n), called Goppa
polynomial, the classical Goppa code coincide with the restriction ofGRSn−r(α, v)
to Fn

q where r = degg(X) and vi = g(αi)/
∏

j ̸=i(αi − αj) ([7, p.340]). Thus the
classical Goppa code is considered as the image of rational function with non-
positive degree whose numerator is divisible by the Goppa polynomial and the
denominator is a fixed polynomial.

Goppa generalized his result to obtain a family of codes on a non-singular
algebraic curve C of genus g defined over Fq. For distinct n number of Fq-
rational points P1, . . . , Pn, put a divisor D = P1 + · · · + Pn, and let E be any
effective divisor such that (SuppE)∩{Pi} = ∅, then a functional type geometric
Goppa code of length n associated with CL(C,D,E) is defined as the image of
the following map:

ΦL : L(C,E) → Fn
q , ΦL(f) = (f(P1), . . . , f(Pn)),
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where L(C,E)={f ∈ Fq(X)∗ | div(f)+E ≥ 0}∪{0}. As the direct consequence
of Riemann-Roch theorem, it is shown that if 2(g − 1) < degE < n, then the
code has dimension k = dimE = degE − g + 1 and the minimum distance
d ≥ n− k− g+1. Since the geometric Goppa is a code defined on an algebraic
geometric curve, it is natural to extend it to codes on a surface, or on more
general object in the algebraic geometry. One of most general definition of this
kind of code is a code on projective scheme associated to a set of Fq-rational
point {P1, . . . , Pn} and an invertible sheaf L = OX(E) for a divisor E, [1].

Definition 1. Let X be a projective scheme over Fq, L be an invertible sheaf,
P = {P1, . . . , Pn} be a set of rational points. The germ map is defined by
choosing trivialization ϕ : L̄Pi

∼= OPi/mPi = Fq for each i such as

α : Γ(X,L) → Fn
q , α(s) = (s(P1), . . . , s(Pn)),

where s(Pi) := ϕ(sPi +mPiLPi) ∈ Fq for any s ∈ Γ(X,L).
Then the code on X corresponding to (P,L) is defined as C(X,P,L) := Im(α).

Although the definition above seems to be inclusive and all-round, it is too
general to calculate some important parameters such as the dimension, the
minimum distance etc. Hansen, in [5], considered this type of code in case that
X is a projective surface, and gave a lower bound for the minimum distance.

Proposition 1. (Hansen) Let X be a projective surface over Fq, and let C1, · · · , Cm

be irreducible curves on X with rational points P = {P1, · · · , Pn} such that there
exists a positive integer N satisfying #Ci(Fq) ≤ N . Let L = OX(E) be an in-
vertible sheaf corresponding to a divisor E satisfying E.Ci ≥ 0 for any i.
Then the code C(X,P,L) has minimal distance δ ≥ n− lN −

∑m
i=1E.Ci, where

l = sup#{i | SuppZ(s) ⊃ Ci} when s ranges in Γ(X,OX(E))\{0}. Especially
when E.Ci = η ≤ N for any i, then δ ≥ n− lN − (m− l)η.

WhenX is a non-singular projective variety with a local coordinates {(Uλ, φλ)}λ.
For the divisor E determined by local equations Rλ(zλ) = 0 on each Uλ, there
is a Fq-isomorphism

Γ(X,OX(E)) → L(X,E) = {f ∈ Fq(X)∗ | div(f)+E≥0}∪{0},
s = {sλ(zλ)}λ 7→ fs(x) = sλ(φλ(x))/Rλ(φλ(x)),

where sλ = s ◦ φ−1
λ . We note that this map is well-defined being independent

on λ.
Here we also note that when we take fs ∈ L(X,E) corresponding to s, Z(s)

in the proposition above is identified as Z(fs) = div({fs(φ−1
λ (zλ))Rλ(zλ)}λ)

under this isomorphism.
Hansen proposed a family of codes on ruled surface associated to a non-

singular curve C, and gave a formula for the dimension of the code related
to the dimension of 0th oder cohomology, [6]. An explicit formulas for the
dimension or the lower bound of δ are given in case of C being P1 or an elliptic
curve by Lomont and Zampolini respectively, [8].
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3 Code on P2

Before giving the definition of our proposed code on P2, we first mention a
proposition on the 0th cohomology group H0(P2,OP2(E)).

Proposition 2. Let E be a divisor on P2 over Fq, and express E = E+ − E−

with two effective divisors which has no common factors. Then

1. There exists homogeneous polynomials R+ and R− in Fq[x0, x1, x2] such
that E+ = div(R+) and E− = div(R−).

2. H0(P2,OP2(E)) = 1
R{f ∈Fq[x0, x1, x2] |f is homogeneous of degE }∪{0},

where R := R+/R−.

3. dimH0(P2,OP2(E)) =

{
1
2(degE + 1)(degE + 2) (degE ≥ 0)

0 (degE < 0)
.

Proof. As E is defined over Fq, E
+ and E− are stable under any σ ∈ G(F̄q/Fq),

then we have only to show the first assertion in case of E being effective. An
effective divisor is a sum of irreducible divisors each of which corresponds to
an absolutely irreducible homogeneous polynomial over F̄q. Thus E = div(R̄)
with a homogeneous polynomial R̄ over F̄q.

From the exact sequence {1} → F̄∗
q → F̄q(P2)∗

div→ Div(P2), div(R̄σ/R̄) =

Eσ − E = 0 means R̄σ/R̄ ∈ F̄q. Moreover Hilbert’s Satz 90 implies that there
exists a ∈ F̄q such that (aR̄)σ = aR̄, then R = aR̄ ∈ Fq[X] and div(R) = E.

Noticing that H0
F̄q
(P2,OP2(E)) = {f ∈ F̄q(P2)∗ | div(f) + E ≥ 0}∪{0} =

1
R { g ∈ F̄q[x0, x1, x2] |g is homogeneous, degg = degE}∪{0} and Fq(P2) = {f ∈
F̄q(P2) |fσ=f, ∀σ∈G(F̄q/Fq)}, we have the second assertion.

The dimension of H0(P2,OP2(E)) is obtained by counting the number of
{xe00 xe11 xe22 |e0 + e1 + e2 = degE, ei ≥ 0}.

From now on, we always assume that curves and divisors are all defined over
Fq. For our proposed code, we focus on some curves on P2 with fixed number
of Fq-rational points.

Definition 2. Let C1, · · · , Cm be mutually distinct absolutely irreducible smooth
plane projective curves of degree d. For each Ci, take n number of Fq-rational
points Pi1, · · · , Pin. Then we call a set of these tuples C = {(Ci, {Pi1, · · · , Pin})}1≤i≤m

a system of m-tuple n-pointed curves of degree d.

Here let E be an effective divisor of degree e such that SuppE∩{Pij} = ∅,
and E = div(R) with R in Prop. 2. Putting Pi = Pi1+· · ·+Pin for each i, define
Φi = ΦCi,Pi,E|Ci

: H0(Ci,OCi(E|Ci)) → Fn
q by Φi(fi) = (fi(Pi1), . . . , fi(Pin)),

and define two Fq-linear maps, H0(P2,OP2(E))
res→

∏m
i=1H

0(Ci,OCi(E|Ci))
ϕ→

Fnm
q by res(f) = (f |C1 , . . . , f |Cm) and by ϕ(f1, . . . , fm) = (Φ1(f1), . . . ,Φm(fm)).
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Definition 3. If ΦP2,C,E = ϕ ◦ res is injective, we call the image of this map,

denoted by C(P2, C, E), a functional type plane code associated to (P2, C, E).

The code defined above is just a code obtained by applying Hansen’s con-
struction to a system of pointed curves, however we can calculate some impor-
tant parameters for this type of code.

Proposition 3. If n>de and dm>e, then ΦP2,C,E is injective.

Proof. If n > de, then deg(E|Ci−Pi)=ed−n<0 and kerΦi=H0(Ci,OCi(E|Ci−
Pi)) = 0 for any i. Thus kerϕ=0. If e< dm, then deg(E − D) = e − dm < 0,
and ker(res)=H0(P2,OP2(E −D))=0 with D = C1 + · · ·+ Cm. Therefore we
have the result.

Proposition 4. When we suppose that n > de, let If = {i | w(Φi(f |Ci)) <
n−de} with the Hamming weight w. Then f ∈ H0(P2,OP2(E −

∑
i∈If Ci)),

and w(ΦP2,C,E(f))≥ (m− | If |)(n−de) for f ∈H0(P2,OP2(E)). If there exists
non-zero f, then |If | d≤e.

Proof. For any i∈If , putDf,i=
∑

f(Pij)=0 Pij , then degDf,i>de and deg(E|Ci−
Df.i) = de−degDf,i < 0. Thus H0(Ci,OCi(E|Ci −Df,i)) = 0, which implies
that f |Ci = 0. If i /∈ If , w(Φi(f |Ci)) ≥ n−de. This concludes the first two
assertions. When there exists f ̸=0, then 0≤deg(E−

∑
i∈If Ci)=e−|If |d, and

|If | d≤e.

Theorem 1. If n>de and dm>e, then

dimC(P2, C, E) =
1

2
(e+1)(e+2) and δ(C(P2, C, E) ) ≥ (m−⌊e

d
⌋ )(n−de),

where δ represents the minimum distance.

Now we apply Hansen’s result in Prop.1 to our system. As we mentioned just
after the proposition, Z(s) = Z(fs) = div({fs(φ−1

λ (zλ))R(φ−1
λ (zλ)}λ). Let gi

be a homogeneous polynomial which defines each Ci. The number l = sup#{i |
SuppZ(s) ⊃ Ci} = sup#{i | gi divides fsR}, which is equal to the maximum
number of gi’s whose multiple has degree less than or equal to e. That is
l = ⌊ ed⌋.

Then the Hansen’s lower bound value for the minimum distance is

mn−⌊e
d
⌋N−(m−⌊e

d
⌋)de=(m−⌊e

d
⌋)(n−de)−(N−n)⌊e

d
⌋,

here n in Prop.1 is replaced by mn and n≤#Ci(Fq)≤N . Thus our resulted
value is greater by (N−n)⌊ ed⌋ then Hansen’s estimation value.
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4 Conclusion

We proposed a family of algebraic geometric code over the projective surface P2

and gave explicit formulas for the dimension and the lower bound. Although our
codes are special type of Hansen’s codes, the estimation value of the minimum
distance is better than in general case. As our construction method is simple,
it can be possible to obtain other important properties.

In our future work, we will obtain the dual code of our type by applying
several important theorems in algebraic geometry. The decoding method is also
now under investigation.
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