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Abstract. In this paper we consider low-density parity-check (LDPC) codes with
special construction. We obtain the lower-bound on error exponent for these codes
under low-complexity decoding algorithm. We show that such LDPC code with spe-
cial construction exists, that error probability of decoding algorithm exponentially
decreases for all code rates below channel capacity. The error exponent is computed
numerically for different code parameters.

1 Introduction

Low-density parity-check code were proposed by R. G. Gallager (G-LDPC codes)
in [1]. The error-correcting capabilities of G-LDPC codes for the binary sym-
metric channel (BSC) were studied in [2], where it was shown that such G-
LDPC codes exist that capable of correcting a portion of errors that grows
linearly with the code length n, with decoding complexity O (n log n). Then
in [3] this lower-bound on guaranteed corrected error fraction was improved.

The lower-bound on code distance of G-LDPC codes was obtained by R. G.
Gallager in [1]. In [4] and [5] the upper and lower-bound on error exponent
under maximum likehood decoding of G-LDPC codes was obtained. In [5]
it was shown that lower-bound on error exponent under maximum likehood
decoding of G-LDPC codes meets the lower-bound on error exponent under
maximum decoding of good linear codes obtained in [6]. It is important to note
that the complexity of maximum likehood decoding is O (2n).

In this paper we consider LDPC codes with special construction and low-
complexity decoding algorithm for these codes. We obtain the lower-bound
on error exponent for these codes under decoding with complexity O (n log n).
We show for the first time that such LDPC code with special construction
exists, that error probability of decoding algorithm with complexity O (n log n)
exponentially decreases for all code rates below channel capacity. The error
exponent is computed numerically for different code parameters.
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2 Construction description

At first consider the construction of parity-check matrix H2 of Gallagers LDPC
code (G-LDPC code) with constituent single parity check (SPC) code with
parity-check matrix H0. Let Hb0 denote a block-diagonal matrix with the b0

constituent parity-check matrices H0 on the main diagonal, that is,

Hb0 =




H0 0 . . . 0
0 H0 . . . 0
...

...
. . .

...
0 0 . . . H0︸ ︷︷ ︸

b0




,

where b0 is very large. If the length of SPC code is n0, then matrix Hb0 is of
size b0×b0n0. Let π (Hb0) denote a random column permutation of Hb0 . Then
the matrix constructed using ` > 2 such permutations as layers,

H2 =




H1

H2
...

H`


 =




π1 (Hb0)
π2 (Hb0)

...
π` (Hb0)




is a sparse `b0 × b0n0 parity-check matrix which characterizes the ensemble of
G-LDPC codes of length n = b0n0 , where n À n0 . Let EG (n0, `, b0) denote
this ensemble.

Definition 1. For a given SPC code with parity-check matrix H0, the elements
of the ensemble EG (n0, `, b0) are obtained by sampling independently the per-
mutations πl , l = 1, 2, ..., ` , which are equiprobable.

The rate of a G-LDPC code from EG (n0, `, b0) is lower-bounded [7] by

R2 > 1− ` (1−R0) , (1)

where R0 = n0−1
n0

is code rate of SPC code. The equality is achieved iff matrix
H2 has full rank.

Now consider the proposing special construction of parity-check matrix of
LDPC code. Let H1 is parity-check matrix of linear code with code length n1

and code rate R1. Consider a block-diagonal matrix Hb1 with the b1 parity-
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checks matrices on the main diagonal

Hb1 =




H1 0 . . . 0
0 H1 . . . 0
...

...
. . .

...
0 0 . . . H1︸ ︷︷ ︸

b1




,

where b1 is so, that b1n1 = b0n0. Then the following matrix

H =




π1 (Hb0)
π2 (Hb0)

...
π` (Hb0)

π`+1 (Hb1)




,

is the parity-check matrix of proposing LDPC code with special construction.
It is easy to see that the first ` layers of matrix H form parity-check matrix of
G-LDPC code. So, we can write the matrix H in the following way:

H =
(

H2

π`+1 (Hb1)

)
.

Matrix H characterizes the ensemble of G-LDPC codes with added layer com-
posed from linear codes (LG-LDPC codes). Let ELG (n0, `, b0, n1, 1, b1) denote
this ensemble.

Definition 2. For a given SPC code with parity-check matrix H0 and for a
given linear code with parity-check matrix H1, the elements of the ensemble
ELG (n0, `, b0, n1, 1, b1) are obtained by sampling independently the permutations
πl , l = 1, 2, ..., ` + 1 , which are equiprobable.

The length of constructed LG-LDPC code is n = b0n0 = b1n1 and code rate
R is lower-bounded by

R > R1 − ` (1−R0) ,

and according to (1):
R > R1 + R2 − 1.
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3 Algorithm description

We will decode described LG-LDPC code like concatenated code, that is on
the first step we decoded received sequence using linear codes with parity-check
matrix H1 from ` + 1 layer of H, on the second step we decode sequence,
obtained on previous step, using G-LDPC code with parity-check matrix H2.

In this paper we will consider the algorithm AC , which consist of the fol-
lowing two steps:

1. received sequence decoded with well known maximum likehood algorithm
separately by b1 linear codes with parity-check matrix H1 from `+1 layer
of H;

2. tentative sequence decoded with well known majority decoding algorithm
AM by G-LDPC code with parity-check matrix H2.

It is important to note that algorithm AC is not iterative. Every received
sequence is decoded only once with maximum likehood decoding algorithm
using linear codes H1 at first, and then obtained sequence decoded with iterative
majority algorithm AM using G-LDPC code H2.

4 Main result

Investigating error probability P under decoding algorithm AC of LG-LDPC
code we will consider memoryless binary-symmetric channel (BSC) with bit
error rate (BER) p. Estimation on error probability P we will write in the
following way:

P 6 exp {−nE (R1, n1, ωt, p)} ,

where E (R1, n1, ωt, p) is required error exponent.
In [3] it was shown that in ensemble EG (n0, `, b0) of G-LDPC codes such

code exists which can correct any error pattern with weight up to bωtnc while
decoding with algorithm AM with complexity O (n log n). In [6] it was shown
that such linear code exist, which error exponent under maximum likehood
decoding is lower-bounded with such E0 (R, p) that E0 (n log n) > 0 for ∀R < C,
where C – is channel capacity of BSC with BER p. Take into consideration
these results we can formulate the following:

Theorem 1. Let in the ensemble EG (n0, `, b0) of G-LDPC codes such code with
code rate R2 exists, which can correct any error pattern of weight up to bωtnc
while decoding with majority algorithm AM .

Let the such linear code exists, which has code length n1, code rate R1 and
error exponent of this code under maximum likehood decoding is lower-bounded
with E0 (R1, p).
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Then in the ensemble ELG (n0, `, b0, n1, 1, b1) of LG-LDPC codes such code
exists, which has the code length n:

n = n0b0 = n1b1,

code rate R:
R > R1 + R2 − 1

and error exponent of this code over memoryless BSC with BER p under de-
coding algorithm AC with complexity O (n log n) is lower-bounded with E:

E (R1, n1, ωt, p) = min
ωt≤β≤β0

{
βE0 (R1, p) + E2 (β, ωt, p)− 1

n1
H (β)

}
, (2)

where β0 = min
(

ωt
2p , 1

)
, H (β) = −β ln β−(1− β) ln (1− β) – entropy function,

and E2 (β, ωt, p) is given by:

E2 (β, ωt, p) =
1
2

(
ωt ln

ωt

p
+ (2β − ωt) ln

2β − ωt

1− p

)
− β ln (2β) ,

herewith n1 satisfies the following conditions:

− lnβ0

E0 (R1, p)
≤ n1 ≤ 1

R1
log2log2 (n) . (3)

Let R → C in the such way, that R1 < C and R2 < 1. Then according to
(2) there exist such n1 that satisfies condition (3) and E (R1, n1, ωt, p) > 0, if
ωt > 0 for ∀R2 < 1.

5 Numerical results

Let consider the maximum of E (R1, n1, ωt, p) for fixed n1 = 2000, p = 10−3

and given R of LG-LDPC code in the following way:

E (R, p) = max
R1,R2:R1+R2−1=R

E (R1, n1, ωt, p) .

Figure 1 illustrates the values of E (R, p) computed for several code rates
R of LG-LDPC codes. Figure 2 illustrates the values E (R, p) and E0 (R, p)
computes for several code rates R (in first case for LG-LDPC codes and in the
second for linear codes).

As it seen on figure 2 the value of E (R, p) is about two degree less than value
of E0 (R, p). But it is important to note that value E0 (R, p) meets only with
decoding complexity O (2n) and value E (R, p) meets with decoding complexity
O (n log n).
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Figure 1: Values of E (R, p) accord-
ing to R of G-LDPC code and for
fixed p = 10−3
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Figure 2: Values of E (R, p) and
E0 (R, p) according to R and for
fixed p = 10−3
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