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Abstract. A class of binary cyclic <22(”1) — 1,202 (25 - 1)>-codes is character-

ized. The BCH bound implies that the minimum distance is greater than four for
these codes, but the van Lint—Wilson bound asserts that > 2(£ + 1).

1 Introduction

Every nonnegative integer can be uniquely represented in base two, namely in
the form
v =y 4+ 112+ 1922 + 1323 4. (1)
with v; from the finite field GF(2). Let B(v) designate the binary representation
of v:
U<—>B(U):I/0V11/2‘--<—><i0,i1,i2,...>, (2)
where (ig,41,12,...) is the subset of indices such that vi, =1, >0.

Let W be the infinite set of all nonnegative integers which are the sum of
distinct powers of four [1], i.e. {0,1,4,5,16,17, 20,21, 64, 65, 68,69, 80,81 ... }.
The following lemma states that every w € W can be represented in exactly
one way as w = y_ooqw22%, w; € GF(2).

Lemma 1. Suppose w,w’ € W. Then w = w' if and only if we; = wh;, i > 0.

The proof is based on the observation that B(w) = woOws0wy ... and
B(w') = wi0wj0w) ... and the uniqueness of the binary representation of a

nonnegative integer. One consequence of the lemma is that W with the usual
definition of < is a totally ordered set.

Definition 1. For each ¢ > 0, let W, be the first 21 elements of W ; that is

l
Wy = {w|w:Zw2i2m}. (3)
=0

Note that it follows from this definition that for each w € W, the Hamming
weight of B(w) = wpOw20...w0000... is at most ¢ + 1. For simplicity of

notation, we use By(w) = wowiws . . . wopwsart1 instead of B(w) for w < 22(6+1)
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2 Definition

Let a be a primitive nth root of unity in the extension field GF (22(“1)) of
GF(2). A cyclic code of length n over GF(2) is generated by a generator
polynomial g(x) € GF(2)[x]. The minimum distance of the cyclic code is
denoted by d.

We can also describe a cyclic code by the set of zeros of g(z). If R is a
subset of {0,1,2,...,n — 1} such that g(a”) = 0 for all v € R, then we shall
say that R is a defining set for the cyclic code. If R is the maximal defining set
for the cyclic code, we shall call it complete and denote by Z. The dimension
k of a cyclic code is equal to n — |Z] [2, §7.3].

Definition 2. For ¢ > 1, consider a cyclic code of length n = 2241 — 1 over
the alphabet GF(2) whose defining set R = Wj.

3 Dimension

A binary cyclic code must have 2v in R whenever v is in R. Consider the

set 2W,. Any w € 2W, must be of the form w = Zf:o w9221 and it has the
following binary representation: By(w) = OwoOws . . . Oway.

Lemma 2. Suppose that s(v) = 2v (mod n). Then functions s : Wy — 2W,
and s : 2Wy, — W, are bijective functions.

Proof. We first observe that s(v) is a cyclic right-shift function under By(v)
because By(s(v)) = vapt11p - .. vae. Set w € Wy, then By(w) = woOws0. . . wy0.
Hence By(s(w)) = OwoOws...O0wys and s(w) € 2W,. Set w € 2W,, then
By(w) = 0wpOws . . . Owge. Hence By(s(w)) = warOwp0 . .. wap—20 and s(w) € Wy.
Combining these statements with Lemma 1 gives that s(v) is the bijective func-
tion with domain W, and codomain 2W,, and vice versa. ]

By extension, we will use the notation s?(v) to denote the jth cyclic right-
shift function. That is s?(v) = s(s(v)) = vavars110 - - - Var_1, etc.

Corollary 1. |W;| = |2WW].
Corollary 2. W, N 2W, = {0}, and consequently |W, N 2W,| = 1.

Proof. The proof uses the fact that B(w) = woOw20. .. wee0 = 0v0vs . .. Ovgy =
B(v) if and only if we; = v9; = 0,0 < ¢ < ¢, and so w = v = 0, where w € W,
and v € 2W,. O

Corollary 3. |W,U2W,| =2|W,| —1.

Proof. The proof is immediate because |W,U2W,| = |W|+|2W,|—|W,;N2W,| =
2W,| — 1. O
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We will denote by w* the maximal element in W;:
w* = max{w | w € Wy}. (4)

Since By(w*) = 1010...10, we have w* = Zf:o 220, On the other hand,

By(2w*) = 0101...01, and this gives that 2w* = YL 22+ is the maximal
element in 2W,.

Lemma 3. Ifw € Wy, then w < %n

Proof. By definition, n = 22(/+1) — 1. Hence we see that

¢ ¢ 20+1
Bw' = w4 2wt =) 224 2 =y "ol =p, (5)
i=0 i=0 i=0
This implies that w* = %n, which proves the lemma because w < w*. ]

Corollary 4. Ifw € 2Wy, then w < %n

Corollary 5. The maximal elements in the sets Wy and 2W, are w* = %n

and 2w* = %n, respectively.

Lemma 4. The code has the complete defining set Z = W, U 2W,.

Proof. Z is the union of cyclotomic cosets [2, §7.5]. The cyclotomic coset
containing w consists of w, 2w (mod n), 22w (mod n),23w (mod n),... for bi-
nary codes. In other words, it consists of the integers w, s(w), s?(w), s3(w), .. ..
From Lemma 2, in the case where w € W we have s/(w) € W for even val-
ues of j and s?(w) € 2W, for odd values of j. Similarly, in the case where
w € 2W,; we have s/(w) € W, for odd values of j and s/(w) € 2W, for
even values of j. Further, from Lemma 3 and Corollary 4 we conclude that
w (mod n) = w for all w € (W, U2W,). Finally, there is no w € Wy for which
s (w) (mod n) ¢ (Wy U2W,), and this is precisely the assertion of the lemma
because R = W,. ]

Now we are ready to estimate the dimension of the code.
Theorem 1. The dimension of the code is k = 272(2¢ — 1).

Proof. Indeed, k = n—|Z|. Lemma 4 gives |Z| = |W,;U2W,;|. From Corollary 3
we obtain | Z| = 2|W,|—1. By Definition 1, we know that |IW,| = 2¢+!. Summing
up, we have

k=n—|z] =22 —1)— (2. 2041 —1) = 20412/ —1). (6)

O
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4 The BCH bound

A cyclic code of length n is a BCH code [3] of designed distance dpcy if, for
some nonnegative integers a and ¢, where ged(e,n) = 1, the set

S={a+ic (modn)|0<i<dpom —2} (7)

is a subset or equal to Z and |S| = dpcmg — 1. This lower bound dpcy on the
minimum distance is the so-called BCH bound of the cyclic code.
In this section we will examine dgco g, but before we need some lemmas.

Lemma 5. Supposew € Z. Then 3w (mod n) € Z if and only if either w = 0,
orw=w*, or w=2w".

Proof. If w € Z, then w € Wy or w € 2W,. Therefore By(w) = wOw20 . . . wo0
and By(2w) = OwoOws ...0wg for w € Wy or By(w) = OwoOws . ..0ws, and
Bi(2w) = woOw0...wep_20 for w € 2W,. Since 3w = w + 2w (mod n),
Bi(3w) = wowowaws . . . wopwey or By(3w) = wopwowows . .. wap_owoy. Finally
3w (mod n) € Z if and only if 3w = 0 (mod n), in other words, if and only if
wo; = 0 or wo; =1 for 0 < ¢ < 2¢. This gives the assertion of the lemma. O

Corollary 6. Suppose w € Z and 3w # 0 (mod n). Then there is one and
only one partition w + 2w = 3w (mod n) over Z.

Corollary 7. Suppose w < n and w = 0 (mod n). Then there are two and
only two partitions 0 + 0 = w* 4+ 2w* = w (mod n) over Z.

These corollaries immediately follow from the binary representation of w,
2w (mod n) and 3w (mod n) and the definition of w*.

Lemma 6. The BCH bound of the code is dpcg > 4.

Proof. Let a =0 and ¢ = 1. Then S = {0, 1,2} is a subset of Z for £ > 1 and
we have dpcp > 4 by the BCH bound (7). O

Lemma 7. The BCH bound of the code is dpcg < 5.

Proof. Assume to the contrary that dpcy > 5. It follows from (7) that S =
{a,a + ¢ (mod n),a + 2¢ (mod n),a + 3¢ (mod n)} is a subset or equal to Z.
We will show that there is no a and ¢ such that |S| = 4.

Let b = a+c¢ (mod n) and w = a+3c (mod n). This means that w = 3b—2a
(mod n), so that w 4 2a = 3b (mod n). We only have the cases where 3b # 0
(mod n) and 3b =0 (mod n).

Consider first the case 3b # 0 (mod n). Then w = b and 2a = 2b (mod n)
by Corollary 6 implying that (a) S = {a,a,a,a}. Or w = 2b (mod n) and 2a =
b (mod n), hence (b) S = {a,2a (mod n),3a (mod n),4a (mod n)}. Using
Lemma 5 we deduce that @ = 0 and S = {0,0,0,0}, or a = w* and S =
{w*, 2w*,0,w*}, or a = 2w* and S = {2w*, w*, 0, 2w*}.
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Now suppose that 3b = 0 (mod n). We apply Lemma 5 and see that this
equation has three possible values of b in Z, namely 0, w* and 2w*.

Assume that b = 0. Then it follows from Corollary 7 that w =0 and a =0
and S is the same as in case (a), or w = w* and 2a = 2w* (mod n) and S =
{w*,0,2w*, w*}, or w = 2w* and 2a = w* (mod n) and S = {2w*, 0, w*, 2w*}.

In case b = w* we have that w = 0 and @ = 0 and S = {0, w*, 2w*,0}, or
w = w* and 2a = 2w* (mod n) and this is similar to case (a), or w = 2w* and
2a = w* (mod n) and it gives case (b).

We finally consider the case where b = 2w™*. The possible values are w = 0
and a = 0 and S = {0,2w*,w*,0}, or w = w* and 2a = 2w (mod n) and S
must be as in case (b), or w = 2w* and 2¢ = w* (mod n) and this is similar to
case (a).

Applying Corollary 5, we can now make a list of all possibilities for S:
{a,a,a,a}, {3n,5n,0,3n}, {5n,3n,0,5n}, {3n,0,5n, 3n}, {5n,0,3n, 50},
{0, én, %n,()}, {0, %n, %n,O}, where a € Z. Thus in all cases, a = a + 3¢
(mod n). So it follows that |S| < 3, and this completes the proof. O

Theorem 2. The BCH bound of the code is dpcy = 4.

Proof. Lemma 6 and Lemma 7 immediately yield the theorem. ]

5 The van Lint—Wilson bound

We first inductively define the notation of an independent set with respect to S,
as follows [4, §5]: (1) the empty set is independent with respect to S, (2) if A
is independent with respect to S, and A C S, and b ¢ S, then A U {b} is
independent with respect to S, and (3) if A is independent with respect to S
and 0 < ¢ < n, then {c+ a|a € A} is independent with respect to S. The
maximal size of a set which is independent with respect to Z is called the van
Lint—Wilson bound dzw of a cyclic code.

We will examine dz of the code, and this is aided by the following lemma.

Lemma 8. Suppose a is odd and c is even. Then 2% +2¢ ¢ Z.

Proof. If w € Z, then w € Wy or w € 2W,. Consequently, we can write
By(w) < (ig,11,12,...) where i; are even if w € W, or odd if w € 2W,. But
By(2% + 2¢) < (a, c) with odd a and even c. Therefore 2* + 2¢ & Z. O

Theorem 3. The van Lint-Wilson bound of the code is éryw > 2(£ +1).

Proof. Since the van Lint—Wilson bound is a generalization of the BCH bound [4,
§5] and 0pcy = 4 by Theorem 2, we only need to show that dry > 2(¢ + 1)
for £ > 2. We construct the sequence Ag = (), Ay, Asg, ..., Ao of subsets of
GF (22(”1)) that are independent with respect to Z. In order to simplify the
notation, we will use the index representation (...) of an integer.
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Let ag = 0, ap = n — 20, ag = 22D _ 90 o — 92(6=2) _ 2(6-1)
G =222 agyy = n— 22, apps = 22070 — 90 g,y = 220-2) _ 9201 T

__92_ o4 92 _ 9l 0 2£ 1 20—1 0
age = 2°—=2% agpr1 =n—2*and bg = 2" +2°, b = 242", by =2 +2Y, bg—
220=3 190 by =22421 by = 220421 by = 2%—1+20 bopg = 22~ 3+20
ooy bog =22 421 by =21+ 20 (Remark: b; ¢ Z for all 0 < j <2+ 1 by
Lemma 8.) Then

A ={(0, 1)},

A2 - {<1>> <1a 2€>})

As ={(0,2(¢ —1)),(0,2(¢£ —1),2¢),(0,2¢ — 1)},

Ay = {<07 2(£ - 2)>a <07 2(£ - 2)a 2‘€>7 <O> 2(6 - 2)>> <0a 20 — 3>}7

A€+1 = {<072>7 <07232€>’ <0a2a2(£ )> B <O 2 4> < >}a

Apz = {(0),(0,20),(0,2(¢ — 1)),...,(0 74>,( ), (L, 2€>}

Apys ={(2(0 = 1)), (2(€ = 1),20),(20 = 1),...,{4,2(€ = 1)),(0,2(¢ — 1)),
(0,2(¢ —1),2¢),(0,2¢ — 1)},

Apya ={(2(0 = 2)),(2(€ = 2),20),(2(€ = 2),2(¢ = 1)),..., (4,2(¢ — 2)),
<07 2(€ - 2))7 <Oa 2(€ )7 £>7 <07 2(6 - 2)>7 <07 20 — 3>}7

Agrsr = {(2),(2,20),(2,2(0 — 1)), ..., (2,4), (0,2), (0,2, 20), (0,2,2(¢ — 1)),
., (0,2,4), (1, 2>},
Agrvs = {0,(20), (2(0— 1)), - (4),(0), (0,26, (0,2(¢ — 1)}, .., (0, 4),
(1),{0,1)}.

It easy to see that A;\ {b;_1} C Z for all 1 < j < 2/+42 because the elements of
these sets are the sums of even powers of two, i.e. in Wy, or a power of two (see
(1) in Ayyo and Agpio). Since the independent set Agpio has the cardinality
2(0+1), we have o > 2(£ + 1). O

Corollary 8. The minimum distance of the code is d > 2(l + 1).
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