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Abstract. A unique decoder for the Chinese remainder codes was stated in [1] in
2000. In this paper, we present a decoder which gives the same error correction
radius by introducing syndromes of the Chinese remainder codes. The error posi-
tions can be found using a so–called error–locator integer Λ which appears in the
proposed key equation. To find Λ, this key equation can be solved by the extended
Euclidean algorithm. The sent message can be obtained from the error free positions
by the Chinese remainder theorem.

1 Introduction

The Chinese remainder code is an error correction code based on the Chinese
remainder theorem. Each symbol of the codeword is defined to be the residue of
some number over different congruences (p1, p2, . . . , pn). Therefore, the Chinese
remainder code is a polyalphabetic code, that is, every codeword’s component
belongs to its own alphabet. To decode such a code, there are two kinds of
unique decoders which have been investigated by Mandelbaum ( [2], [3]) and
Goldreich et.al. [1]. Mandelbaum gave a decoding algorithm when the number
of errors is within half the minimum distance provided pi’s do not differ much.
In this paper, we present another decoder which reaches the same error cor-
rection radius (n − k) log p1/(logp1

+ log pn) as in [1]. The authors of [1] find
directly the sent codeword under some conditions. A salutary lesson drawn
from classical decoding Reed–Solomon codes is to separate decoding into two
steps. The first step is to find the error locations, and the second is to figure
out the error values. According to this experience, we can decode the Chinese
remainder code in two steps as well. Therefore, in this paper, we first define
the syndrome of the code and then use our syndrome–based decoder to find the
error positions, and finally we correct errors.

The paper is organized as follows. In the first section, we recall the Chinese
remainder theorem and give the definition of the Chinese remainder code. Some
properties which will be used later are also pointed out. Then we introduce the
syndrome in the second section, and a syndrome–based decoding algorithm
follows. In Section 4, we come to the conclusion and look into the future work.



Li 235

2 Chinese remainder code

In this section, we give the definition of the Chinese remainder code and intro-
duce the error–locator Λ to analyze some properties of the Chinese remainder
codes. Similar to Reed–Solomon codes, a transformation between domain of
integer numbers and vectors over integers is proposed. Before defining the
Chinese remainder code, we recall the Chinese remainder theorem (CRT).

Theorem 1 (Chinese Remainder Theorem). If p1, p2, . . . , p` are positive in-
tegers which are relatively prime in a Euclidean domain R, and a1, a2, . . . , a`

is any given integer sequence in the Euclidean domain, let [X]pi∀i denote the
remainder when X is divided by pi, then there exists an integer X solving the
following system of simultaneous congruences

[X]p1 = a1, [X]p2 = a2, . . . , [X]p`
= a`.

Furthermore,

X =
∑̀

i=1

ai · P

pi
·
[(

P

pi

)−1
]

pi

,

where P =
∏`

j=1 pi. The integer X is unique when X < P .

The Chinese remainder theorem gives a construction of Chinese remainder
codes.

Definition 1 (Chinese Remainder Code). Let p1 < p2 < · · · < pn be relatively
prime integers, and k < n an integer. An integer message C smaller than
K =

∏k
i=1 pi can be mapped to a codeword vector c of length n:

C 7→ c = {(ci = [C]pi , i = 1, . . . , n) : C ∈ N and C < K} .

Obviously, the Chinese remainder code is a polyalphabetic code with cardi-
nality K. It has length n, and the minimum Hamming distance is d = n−k+1
since at most k − 1 coordinates of different codewords can be the same by the
Chinese remainder theorem.

Consider integer X < N =
∏n

i=1 pi and vector x = (x1, x2, . . . , xn), then
by CRT there is a one-to-one mapping from a number X to a vector x. We
denote this mapping by X � x, and vice versa x� X. If a codeword c is
transmitted over an additive noise channel, then at the receiver side we get a
received word r = c + e where e is an error word. Here each coordinate ri is
abtained by [ci + ei]pi . The same relation holds between the message C and
the received number R in the numerical domain, which is R = C + E. The
integer numbers R and E can be calculated from the vector r and e respectively
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according to the CRT, so 0 ≤ R, E ≤ N − 1.

Let
Λ :=

∏

j∈J
pj (1)

where J is the set of error positions. We call Λ the error–locator. According to
the definition of Λ (1), if we transform Λ into a vector λ, then the entries where
errors occur are zero, i.e., λi = 0 for ci 6= ri, ∀i = 1, . . . , n. Thus, we have the
following lemma:

Lemma 1. The product of the error–locator and the error value is a multiple
of N , i.e.,

Λ · E ≡ 0 mod N.

Proof. Let Γ =
∏n

j=1
j /∈J

pj . The error word e = (e1, e2, . . . , en) has zero entries

at error free positions, that is Γ|E. Since Λ · Γ = N , it is straightforward to
obtain N |(E · Λ) which is stated by the lemma.

Corollary 1 (Convolution Property). The product of two integer numbers mod-
ulo N corresponds to elementary multiplication of two vectors:

a� A, b� B

ci = aibi mod pi, c� C = AB mod N.

Corollary 2. The product of the error–locator and [E]K is a multiple of K:

Λ · [E]K ≡ 0 mod K. (2)

Proof. The integer [E]K < K is the remainder of E modulo K, i.e., [E]K =
E −mK where m is some integer factor. Therefore,

[E −mK]pi = [E]pi (3)

for i = 1, . . . , k. For i = k + 1, . . . , n, we can not guarantee that (3) holds. In
the vector form, e and eK(:=� [E]K) have the same error position(s) in the
first k positions. Therefore, the vector form of Λ · [E]K has all zero in the first
k positions, and (2) holds by Corollary 1.

One can compare Chinese remainder codes with Reed–Solomon codes in a
perspektive of the transform between two domains or the convolution property.
And for the Reed–Solomon codes, we define an error–locoter polynomial Λ(x)
which has roots at all error positions, whereas all the factors of the error-locator
Λ for the Chinese remainder codes indicate error positions as well. For more
details of the Reed–Solomon codes, we refer to [4].
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3 Syndrome–based decoding

Equipped with the results mentioned in the previous section, we now define
the syndrome of the Chinese remainder codes and later on the key equation to
decode Chinese remainder codes.

3.1 Syndrome

We define the syndrome S of a received word r� R as follows:

S =
R− [R]K

K
. (4)

Remark:

1. The syndrome of a codeword c is zero, because (C − [C]K)/K = 0.

2. The syndrome is an integer and depends only on the error word E, and
does not depend on the codeword C:

S =
R− [R]K

K
=

{
C+E−[C]K−[E]K

K if 0 ≤ [E]K < K − C;
C+E−[C]K−[E]K+K

K otherwise.

We denote it as S = E−[E]K+δK(C,E)K
K where

δK(C, E) =
{

0 if 0 ≤ [E]K < K − C;
1 otherwise.

3.2 Decoding algorithm

The inspiration of the algorithm comes from decoding Reed–Solomon codes by
the key equation [4]. The proposed decoder finds the error–locator Λ given pa-
rameters (N, K) of the code and the syndrome S. Up to (n−k) log p1/(log p1 +
log pn) errors can be always corrected. The decoding radius is the same as the
one for the unique decoder in [1]. In contrast to [1] which finds the codeword
directly, our decoder finds the number of errors and their positions.

The multiplication of Λ and the syndrome S can be written as

Λ · S = Λ
(

E − [E]K + δK(C, E)K
K

)
.

With Lemma 1 and Corollary 2, we obtain

Λ · S =
iN − jK + δK(C,E)ΛK

K
= i

N

K
− j + δK(C, E)Λ. (5)
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where i , ΛE/N and j , Λ[E]K/K are some integer factors. We know from (2)
that 1 ≤ j < Λ. Let Ω = −j + δK(C, E)Λ, then there are two cases we have to
consider:

1. Ω = −j < 0. Since Ω + Λ = −j + Λ > 0, we obtain −Λ < Ω < 0.

2. Ω = −j + Λ > 0. Furthermore, Ω− Λ = −j < 0, hence, 0 < Ω < Λ.

In both cases, the absolute value of Ω should be smaller than Λ. Note that, if
Ω = 0, then the received word is error free.

Using ΛR = ΛC + ΛE = ΛC mod N , one can find the decoding radius is
Λ <

√
N/(K − 1) which corresponds to the number of correctable errors is at

most (n− k) log p1/(log p1 + log pn). For the proof, see [1].

Rewrite (5) as

Λ · S ≡ Ω mod
N

K
with |Ω| < Λ <

√
N

K − 1
. (6)

As a result, we have the key equation (6). Given S, N and K, one can solve the
key equation and obtain Λ, using the following Algorithm 1.

Algorithm 1: Syndrome–Based Decoding Chinese Remainder Codes
Input: Syndrome S calculated by (4), N , K
Output: Error–locator Λ

1. Solve Λ · S ≡ Ω mod N/K by extended Euclidean algorithm
iteratively to find the greatest common divisor of S and N/K, which is
ΛiS + ti(N/K) = Ωi;
2. Stop when Λi < |Ωi| and Λi+1 > |Ωi+1|;
3. Output Λ = Λi and by factorization we know the error positions and
the number of errors.

The error–locator is needed to be factorized, so we still need to analyze the
complexity for factorization and then for the whole algorithm. This can be
done as the future work. When the set J of error positions was found, the
message C can be obtained from the error free positions by the CRT.

4 Conclusion

To decode the Chinese remainder codes, we introduce the error–locator, the
syndrome, and derive the key equation. We propose to solve the key equation
by the extended Euclidean algorithm and as a result to find the error locator
and hence positions of errors. The message C can be obtained from the error
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free positions by the CRT.

This approach allows to decode interleaved Chinese remainder codes where
a number of codewords of same length are corrupted by the errors at the same
error locations. We can decode all the words collaboratively beyond half the
minimum distance.
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