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Abstract. We study (xvt, xvt−1)-minihypers in PG(t, q), i.e. minihypers with the
same parameters as a weighted sum of x hyperplanes. We classify these minihypers
as a nonnegative rational sum of hyperplanes and we use this classification to extend
and improve the main results of several papers which have appeared on the special
case t = 2. We establish a new link with geometric coding theory and we use this
link to create new families of these minihypers, which results in new families of
linear codes meeting the Griesmer bound.

1 Introduction and preliminaries

Definition 1. Let Fq be a finite field of order q and let G be an m× n matrix
of rank k over Fq. The linear [n, k]-code C defined by G is the k-dimensional
subspace of Fn

q generated by the rows of G. The matrix G is called the generator
matrix of C. The parameters n and k are respectively called the length and
dimension of the code C and are denoted by len(C) and dim(C) respectively.

Definition 2. Let C be a linear code. If d is the maximum integer for which
every two different vectors in C differ in at least d positions, then d is called
the minimum distance of the code C.

A linear Fq-code with parameters n, k and d is denoted as an [n, k, d]-code.

Theorem 1 (The Griesmer Bound [3, 9]). Let C be a linear [n, k, d]-code over
Fq. Then

n ≥
k−1∑

i=0

⌈
d

qi

⌉
. (1)

An important problem in coding theory is the study of linear codes that
meet the Griesmer bound, as these have the shortest possible length for given
dimension and minimum distance.
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Remark 1. The projective t-dimensional space over the field Fq is denoted by
PG(t, q). The number of points in this space is vt+1 = qt+1−1

q−1 . There are vt+1

hyperplanes in PG(t, q), which we will denote by H1, . . . , Hvt+1.

Definition 3. An (f,m)-minihyper in PG(t, q) is a multiset of f projective
points, with the property that every hyperplane contains at least m of these
points. Hereby, the number of points in a multiset is always counted by summing
the multiplicity of all points in the space or in a hyperplane.

In case the parameters t and q are clear from the context (or not relevant),
we will simply call such a multiset an (f, m)-minihyper. Clearly, the sum (as
multiset) of a collection of subspaces {πi}i∈I of the projective space, is an
example of a (

∑
i∈I vdim(πi)+1,

∑
i∈I vdim(πi))-minihyper.

In [4], it was shown that the existence and classification of [n, k, d]-codes
over Fq meeting the Griesmer bound can in many cases be reduced to studying
the existence and classification of certain corresponding families of minihypers
in PG(k − 1, q). Since then, many papers have appeared on the link between
minihypers and linear codes meeting the Griesmer bound.

In [1,6,7], (xv2, xv1)-minihypers in PG(2, q) were extensively studied; these
are minihypers with the same parameters as a sum of x projective lines. We
will study a more general class of minihypers, containing the previous class:
(xvt, xvt−1)-minihypers in PG(t, q), for arbitrary t ≥ 2. These are minihypers
with the same parameters as the sum of x hyperplanes.

In Section 2, we will establish a new classification of these minihypers in
terms of rational linear combinations of incidence vectors of hyperplanes. In
Section 3, we utilize this classification to extend and improve several key results
from [6] and [7]. In Section 4, we establish a new link with coding theory, more
specifically with the codewords in the Zq-ring code with the incidence matrix
of points and hyperplanes in PG(n, q) as its parity check matrix. Using this
link, we provide a new construction technique for these minihypers, resulting
in several new constructions.

2 Rational sums

Definition 4. A proper multiset in PG(t, q) is a nonempty multiset in which
not all the points of PG(t, q) have positive multiplicity (so at least one point
has zero multiplicity). A proper minihyper is a minihyper which is a proper
multiset. Any non-proper (f,m)-minihyper contains the entire projective space;
it is either equal to the projective space (and then it is a (vt+1, vt)-minihyper),
or it is a decomposable minihyper (as it can be written as the sum of a (vt+1, vt)-
minihyper and a (f − vt+1, m− vt)-minihyper).

Clearly, an (xvt, xvt−1)-minihyper is always proper for x ≤ q, since there
are only xvt ≤ qvt = vt+1 − 1 < vt+1 points in it.
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Theorem 2. Let K be an arbitrary multiset in PG(n, q), q = ph. Then its
incidence vector w can uniquely be written as a linear combination of incidence
vectors of hyperplanes over Q: w =

∑vt+1

i=1 riχHi. Moreover, ri ≥ 0 for each
i ∈ {1, . . . , vt+1} if and only if w is an (f, m)-minihyper with m ≥ vt−1

vt
f . If K

is proper, ri ≥ 0 for each i ∈ {1, . . . , vt+1} if and only if K is an (xvt, xvt−1)-
minihyper for some positive integer x.

Theorem 3. For any proper (xvt, xvt−1)-minihyper F =
∑vt+1

i=1 riχHi in PG(t, q),
the smallest positive integer c for which cri ∈ N for all i ∈ {1, . . . , vt+1}, is a
power of p (and a divisor of qt−1).

Remark 2. From now on, if F is an (xvt, xvt−1)-minihyper in PG(t, q), we
will denote by ri(F) the coefficient ri associated to the i-th hyperplane Hi in the
rational sum obtained in Theorem 2. If π is the hyperplane Hi, we may also
write rπ(F). If the minihyper F is clear from the context, we will simply write
ri or rπ. Since the minihyper can be written as a rational sum in a unique
way, this will often be the case. In a similar fashion, we will write c(F) for the
integer c from Theorem 3. Again, if the minihyper F is clear from the context,
we will simply write c.

Remark 3. A proper (xvt, xvt−1)-minihyper in PG(t, q) (with x > 0) cannot
be decomposed into a hyperplane and an ((x − 1)vt, (x − 1)vt−1)-minihyper if
and only if rπ < 1 for each hyperplane π. In this case, we call the mini-
hyper hyperplane-indecomposable. For x ≤ q, we will see in Section 3 that
hyperplane-indecomposability is equivalent to indecomposability.

3 Extension of previous results

In this section, we will apply Theorem 2 to generalize and improve several key
results from [6] and [7]. In what follows, we let q = ph with p prime (this defines
p and h).

R. Hill and H.N. Ward [6] proved the following modular result via polyno-
mial techniques for t = 2. This was extended to t > 2 in [5, Theorem 4.6], using
similar techniques.

Theorem 4. Let F be an (xvt, xvt−1)-minihyper with x ≤ q − pf in PG(t, q),
for some nonnegative integer f . Then F(π) ≡ xvt−1 (mod pf+1qt−2) for every
hyperplane π in PG(t, q).

We managed to prove a sharper result:

Theorem 5. Let F be an (xvt, xvt−1)-minihyper in PG(t, q). Then F(π) ≡
xvt−1 (mod qt−1

c ) for every hyperplane π in PG(t, q). This is stronger than
Theorem 4 since pf+1 divides q

c .
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Corollary 1. Let F be a nonempty (xvt, xvt−1)-minihyper in PG(t, q). Then
x > q − q

c . In other words: if x ≤ q − q
c0

for some positive integer c0, then
c < c0.

As special case of Corollary 1, we get the following corollary.

Corollary 2. For x ≤ q− q
p (and hence for x < q when q = p), we have c = 1.

This means that the minihyper consists of a sum of x hyperplanes.

This special case was proven earlier for t = 2 in [6, Theorem 20] and for
general t in [5, Corollary 4.8]. The sharpness of the bound in Corollary 2 has not
yet been demonstrated. In Section 4, we will show the sharpness of this bound.
This family of examples will show the sharpness of the bound in Corollary 1 in
general when c = pe with e|h (with q = ph).

Corollary 3. If x ≤ 2q − 2 q
p + 1, then a proper (xvt, xvt−1)-minihyper is

decomposable if and only if it is hyperplane-decomposable.

Remark 4. Corollary 2 and its sharpness determine the smallest x for which
there is an indecomposable (or, equivalently, a hyperplane-indecomposable)
(xvt, xvt−1)-minihyper in PG(t, q).

The largest x for which there exists a hyperplane-indecomposable (xvt, xvt−1)-
minihyper is x = qt−q, in which case F is qt−1−1 times the setwise complement
of the unique point with multiplicity 0. The largest x for which a proper inde-
composable minihyper exists is not known, not even for t=2. A generalization of
the result by Landjev and Storme [7] on the case t = 2 follows straightforwardly
from the techniques in this paper; it is presented in Theorem 6. We however
believe that this bound is not sharp at all.

Theorem 6. Let F be a hyperplane-indecomposable (xvt, xvt−1)-minihyper. Then
x ≤ qt − 2q + q

p − 1 and the multiplicity of any point in F is at most qt−1 − 1.

4 Another link with coding theory

We have established a new correspondence between the hyperplane-indecom-
posable (xvt, xvt−1)-minihypers in PG(t, q) and the dual projective space code
of PG(t, q) over the ring Zc, where c is the number described in Theorem 3.

Theorem 7. There is a natural bijective correspondence between the code words

(z1, . . . , zvt+1) ∈ C⊥
c (t, q)

and the hyperplane-indecomposable (xvt, xvt−1)-minihypers
∑vt+1

i=1 riπi (with c
the number from Theorem 3).
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Using this correspondence, some new constructions of non-trivial (xvt, xvt−1)-
minihypers can be done. Ball’s construction, mentioned in [7], can be derived
as a special case of this theorem.

Lemma 1 (Ball’s construction). Let B be a set of points in PG(t, q) and let
e be the largest nonnegative integer such that B meets each hyperplane in 0
modulo pe points. Then there exists an

( |B|
pe vt,

|B|
pe vt−1

)
-minihyper in PG(t, q)

with c = pe.

More interestingly, we can also utilize 1 modulo pe sets to construct new
examples, as the following lemma demonstrates.

Lemma 2. Let A and B be sets of points in PG(t, q) and let e be the largest
nonnegative integer such that A and B both meet each hyperplane in 1 modulo
pe points. Then there exists an (xvt, xvt−1)-minihyper F in PG(t, q) with c = pe

and x = |B \A|+ λ |A|−|B|pe , for any λ ∈ {1, 2, . . . , pe − 1}.
Several examples of 1 modulo pe sets (with e ≥ 1) are known: i-dimensional

subspaces with i ≥ 1, Baer subgeometries, unitals and hermitian varieties,
linear blocking sets and many, many other commonly studied structures in
finite geometries. With Lemma 2, all of them can be used to obtain structurally
new examples. In particular, we were able to construct a minimal nontrivial
example, i.e. a minihyper with x = q− q

p +1 which is not a sum of hyperplanes.
This shows the sharpness of Corollary 2 and can also be used to show the
sharpness of Theorem 6. In some cases, the construction can also be used to
show the sharpness of Corollary 1.

Theorem 8. For each divisor e of h (where q = ph), there exists an (xvt, xvt−1)-
minihyper in PG(t, q) with x = q − q

pe + 1.

Remark 5. Let again t = 2 and let q = p2 and e = 1. Repeating the con-
struction in the proof of Theorem 8 with the same choices of A and B, but
now varying λ ∈ {1, . . . , p − 1}, one obtains a spectrum result: a nontrivial
minihyper for each x ∈ {q − q

p + 1, . . . , q − 1}.
The construction in the proof of Theorem 8 was inspired by the construction

of the smallest known code words (in terms of Hamming weight) in the dual
code C⊥

PG(2,q) associated to the projective plane PG(2, q) [8]. These code words
are conjectured to be the smallest in Hamming weight. Corollary 2 shows that
they are the smallest weight code words with respect to the modified weight
function w : C⊥

PG(2,q) → N : (c1, . . . , cvt+1) 7→
∑vt+1

i=1 ci.

Corollary 4. The bound in Corollary 2 is sharp. When e divides h (with c = pe

and q = ph), the bound in Corollary 1 is also sharp.

It is not known whether the bound in Corollary 1 is sharp for all c.
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