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Abstract. In this paper we introduce a new quaternion algebra and find a maximal
order in this algebra which can be an interesting candidate for space-time coding due
to its discriminant and the volume of the Dirichlet’s polyhedron of its unit group.
For this new algebra, vol(P) is much smaller than the volume of the polyhedron
corresponding to the Golden Code algebra. Algebraic codes such that vol(P) is
small are better suited for decoding using the method of algebraic reduction, [1].

1 Introduction

The use of preprocessing before the search phase in decoders improves the
performance of suboptimal decoders, and considerably reduces the complexity
of ML decoders. We are interested here in the right preprocessing (reduction)
that consists in finding a reduced basis for the lattice generated by the channel
code matrix.

In [1], a new reduction approach has been proposed, called algebraic re-
duction. Its principle is to absorb part of the channel inside the codewords,
by approximating normalized channel matrices by codewords. The key idea is
to approximate the channel matrix with a unit of the corresponding maximal
order.

Algebraic codes such that vol(P) is small, where P is a compact hyperbolic
polyhedron, are better suited for the method of algebraic reduction [1] since the
approximation error is then reduced. This volume is known a priori and only
depends on the choice of the quaternion algebra. In this paper we propose to
build a quaternion algebra such that vol(P) is much smaller than the volume
of the polyhedron corresponding to the Golden Code algebra studied in [1].

This paper is organized as follows: in Section 2 we present introductory
concepts; in Section 3 we present the Tamagawa Volume Formula. Finally, in
Section 4 we present a new cyclic division algebra and generators of the group
of units. Section 5 concludes the paper.
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2 Cyclic algebras, orders and discriminants

Let L/K be a Galois extension of degree n such that its Galois group G =
Gal(L/K) is cyclic, with generator σ. Choose a nonzero element γ ∈ K. We
construct a non commutative algebra, denoted by A = (L/K, σ, γ), as follows:

A = L⊕ eL⊕ e2L⊕ · · · ⊕ en−1L

where e ∈ A is an auxiliary generating element subject to the relations xe =
eσ(x) for x ∈ L and en = γ. Recall that ⊕ denotes a direct sum. Such an
algebra is called a cyclic algebra. It is a right vector space over L, and as such
has dimension (A : L) = n.

Cyclic algebras naturally provide families of matrices thanks to an explicit
isomorphism between the algebras A⊗K L and Mn(L).

The next proposition tells us when a cyclic algebra is a division algebra.

Proposition 1. [2] (Norm Condition): The cyclic algebra A = (L/K, σ, γ)
of degree n is a division algebra if and only if γn/p is not the norm of some
element of L∗ for any prime divisor p of n.

The most important algebraic object for the design of lattice codes from
algebraic number fields is the ring of algebraic integers. In division algebras,
the analogy of this concept is what is called a maximal order.

Definition 1. Suppose that L/K is a cyclic extension of algebraic number
fields. Let A = (L/K, σ, γ) be a cyclic division algebra and let γ ∈ K∗ be an
algebraic integer. The OK−module

Λ = OL ⊕ eOL ⊕ · · · ⊕ en−1OL

where OL is the ring of integers, is a subring of the cyclic algebra (L/K, σ, γ).
We refer to this ring as the natural order.

Definition 2. An OK-order Λ in A is a subring of A, having the same identity
element as A, and such that Λ is a finitely generated module over OK and
generates A as a linear space over K. Λ is said to be maximal if it is not
properly contained in any other OK-order in A.

Definition 3. Let m = dimKA and k = dimQK. The discriminant of the
OK-order is the ideal d(Λ/OK) in OK generated by the set

{det(trA/K(xixj))m
i,j=1 | (x1, · · · , xm) ∈ Λm}.

Equivalently we can compute the discriminant as

d(Λ/OK) = det(tr(xixj))m
i,j=1 and d(K/Q) = det(tr(xixj))k

i,j=1



Alves, Belfiore 25

where {x1, · · · , xm} is any OK-basis of Λ and {x1, · · · , xk} is an Z-basis of OK ,
respectively.

We already saw that in the case of the Golden algebra the natural order
is maximal [2]. So clearly natural orders can be maximal, but this does not
always happen. Maximal orders are difficult to construct by hand. Luckily, the
construction algorithm from [3] is implemented in the MAGMA software [4].
This algorithm computes a maximal orderO for a quaternion algebraA. In what
follows, we will only consider the case of quaternion algebras, which corresponds
to a space-time code with two transmit antennas.

3 Tamagawa volume formula

Algebraic reduction consists in approximating the normalized channel matrix
with a unit U of norm 1 of the maximal order O of the algebra of the considered
STBC, that is an element U of O such that det(U) = 1. For details see [1].

The quality of approximation by a unit is related to the diameter Rmax of
the fundamental polyhedron, while the speed of the algorithm depends on the
cardinality r of a minimal set of generators for the group.

Poincaré’s theorem establishes a correspondence between a set of generators
of the group and the isometries which map a facet of the polyhedron to another
facet. All the polyhedra are isometric, and they cover the whole space H3,
forming a tiling. We want to approach the points into H3 by the closer unit.
Thus, when the volume is smaller the units are closer to each other and therefore
the approximation is better. This volume is known a priori and only depends
on the choice of the algebra A.

Theorem 1. (Tamagawa Volume Formula). Let A be a quaternion algebra
over K such that A⊗Q R ∼= M2(C). Let O be a maximal order of A. Then the
hyperbolic volume is given by,

V ol(PO1) =
1

4π2
ζK(2)|DK |3/2

∏

p|δO
(Np − 1).

In the previous formula, ζK denotes the Dedekind zeta function2 relative
to the field K, DK is the discriminant of K, δO is the discriminant of O, p
varies among the primes of OK , and Np = [OK : pOK ], where OK is the ring
of integers of K.

We wish to build a quaternion algebra over K, such that |DK | and ζK are
as small as possible. Furthermore, as can be seen in Theorem 1, the calculation
of V ol(P) depends on a maximal order of the quaternion algebra.

2The Dedekind zeta function is defined as ζK(s) =
∑

I

([OK : I])−s, where I varies among

the proper ideals of OK .
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4 Constructing a space-time code with a small
volume

In this paper we propose to construct a quaternion algebraA = (L/K, σ, γ) over
K = Q(w), w = (−1 + i

√
3)/2 since |DQ(w)| = 3 and ζQ(w) = 1.285190 · · · are

both smaller than the same quantities for Q(i). Now, according to Proposition
1, we need to choose γ ∈ K∗ which is not a norm of elements of any elements
in L and such that |γ| = 1, which guarantees that the same average energy is
transmitted from each antenna and each channel use. This limits the choice
to γ = ±1, ±w, ±w2. Next Proposition shows that γ = −w satisfies the norm
condition for a suitable extension L/Q(w) which leads to a quaternion algebra
of small volume.

Proposition 2. Let L = Q(w, θ), w = (−1 + i
√

3)/2 and θ =
√

2 + w. Then
the element γ = −w is not a relative norm of any x ∈ L, i.e, NL/Q(w)(x) 6=
−w, ∀x ∈ L.

Proof. Let x = a + b
√

2 + w ∈ L with a, b ∈ Q(w) then we must show that

a2 − b2(2 + w) = −w (1)

has no solution for a, b ∈ Q(w). We can lift this equation in the (2 + w)-adic
field K<2+w>. Taking the valuations, ν = ν<2+w>, in both sides of (1):

ν(a2 − b2(2 + w)) = ν(−w) = 0, (2)

since w is an unity in Q(w). Using the properties of valuation we have that

ν(a2 − b2(2 + w)) ≥ min{2ν(a), 2ν(b) + 1}.
As 2ν(a) 6= 2ν(b) + 1 since 2ν(a) is even and 2ν(b) is odd, we have ν(a2 −

b2(2 + w)) = min{2ν(a), 2ν(b) + 1} (2)
= 0.

So if min{2ν(a), 2ν(b) + 1} = 2ν(a), then ν(a) = 0, so a ∈ OK<2+w> is
a integer as well as b since 2ν(b) + 1 > 0. The other case is impossible since
2ν(b) + 1 is odd. Thus from (1)

a2 − b2(2 + w)mod(< 2 + w >) = −w mod(< 2 + w >)
a2 = −w mod(< 2 + w >). (3)

We can rewrite (3) as a2 ≡ [−(2 + w) + 3− 1]mod(< 2 + w >).
Since we have OK<2+w>/ < 2 + w > OK<2+w> ' F3,

a2 = −1mod(< 2 + w >) inF3.

We conclude that −1 should be a square in F3, which is a contradiction.
So a2 = −1 has no solution in K<2+w>, but Q(w) ⊂ K<2+w> then a2 has no
solution in Q(w), i.e., (1) has no solution for a, b ∈ Q(w).
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Now we can consider the cyclic division algebra (or equivalently quaternion
algebra in this case).

But here, the natural order is not a maximal order. By using the MAGMA
software, we compute a maximal order O for the quaternion algebra A with
basis {1, θ, e, θe}. This maximal order O can be written as

O = Z[w]⊕ Z[w]θ ⊕ Z[w]e⊕ Z[w]δ

where δ = w + (w + 1)θ + (w + 1)e + θe and e =
(

0 1
−w 0

)
.

Now we are ready to calculate the value of
∏

p|δO
(Np − 1) which is

(N2Z[w] − 1) · (N(2+w)Z[w] − 1) = 2 · 3 = 6.

Therefore, by Theorem 1, V ol(PO1) = 1.0338314. This volume is smaller than
the one of the Golden Code algebra (4.885149838 · · · ).

Now according to the principle of algebraic reduction we need to approxi-
mate the normalized channel matrix with a unit of norm 1 of the maximal order
O of the algebra given above.

Remark 1. The set O1 = {u ∈ O∗ | det(u) = 1} is a subgroup of O.
In fact, if u is a unit of the Z[w]-order O, then NA/Q(w)(u) = det(u) is a

unit in Z[w], that is, det(u) ∈ {1,−1, w,−w, w2,−w2}. O1 is the kernel of the
reduced norm mapping N = NA/Q(w) : O∗ → {1,−1, w,−w,w2,−w2} which is
a group homomorphism, thus it is a subgroup of O.

We have that N is surjective then {1,−1, w,−w,w2,−w2} ∼= O∗/O1, and
O1 is a normal subgroup of index 6 of O∗. Its cosets can be obtained by multi-
plying for one of the coset leaders {1,−1, w,−w, w2,−w2}.

So, considering the elements g ∈ O1 such that ||g||2F ≤ 2 +
√

3 we need to
look for elements u in O∗ = ∪6

i=1siO1, si ∈ {1,−1, w,−w, w2,−w2} such that
det(u) = 1 and N(u) = 1.

Here, we also have to find the unitary units which, once multiplied by any
other unit will not change the Frobenius norm of that unit. In fact, they have
no incidence in the approximation of the normalized channel matrix since the
metric we want to minimize is the Frobenius norm. So, after some calculus we
found that this set of unitary elements is the subgroup {1,-1, Ω,−Ω} where

Ω =
(

0 w
−w2 0

)
. Finally, a set of generators for PO1 = O1/{1,-1, Ω,−Ω}

is displayed below.
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u1 =
(

1
2(−2 + θ − ω + θω) 1

2(−1− θ − ω)
1
2(−1− θω) 1

2(−2− θ − ω − θω)

)

u2 =
(

1
2(−2 + θ − ω + θω) 1

2(1− θ + ω)
1
2(1− θω) 1

2(−2− θ − ω − θω)

)

u3 =
(

1
2(θ − ω + θω) 1

2(1− θ − ω)
1
2(−1− (2 + θ)ω) 1

2(−θ − ω − θω)

)

u4 =
(

1
2(θ − ω + θω) 1

2(−1− θ + ω)
1
2 + ω − θω

2
1
2(−θ − ω − θω)

)

u5 =
(

1
2(−1− θ − ω) 1

2 + ω − 1
2θ(2 + ω)

1
2(2 + θ + ω − θω) 1

2(−1 + θ − ω)

)

u6 =
(

1
2(−1 + θ − ω) 1

2 + ω − 1
2θ(2 + ω)

1
2(2 + θ + ω − θω) 1

2(−1− θ − ω)

)

From the Dirichlet polyedron of a Kleinian group one can obtain a complete
description of the latter, including generators and relations.

Due to lack of space, a set of relations among these generators and action
of the generators on the vertices of the Dirichlet polyhedron will be given in a
future work.

5 Conclusion

In this paper we have introduced a new cyclic division algebra based on quater-
nion algebras and have found a maximal order in this algebra which can be
an interesting candidate for space-time coding. For this new algebra, vol(P) is
much smaller than the volume of the polyhedron corresponding to the Golden
Code algebra, which allows a more efficient algebraic reduction of the code.
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