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Abstract. This work gives a negative answer to the problem of finding finite base
of equations for the real numbers with distinguished constant 1, ordinary product
and unary operation 1− x.

1 Introduction

In this paper we study the algebra A1 = 〈R, 1, ¬, ·, =〉, where the set R is a set
of real numbers, 1 is distinguished constant, ¬ (negation) is the unary operation
defined as ¬x = 1 − x, · is ordinary product of real numbers. Note that these
operations are fundamental in Zadeh’s fuzzy logic [3], which for the past 45
years has become one of the most rapidly developing areas of mathematics.

In this work we use the standard algebraic notions of algebras and terms [2].
If two terms t(x1, x2, ..., xn) and τ(x1, x2, ..., xn) coincide syntactically we

write
t(x1, x2, ..., xn) ≡ τ(x1, x2, ..., xn).

Equation is a formula of the form t = τ where t and τ are arbitrary terms.
When an equation is satisfied in algebra for every value of the variables, we say
that the equation is valid in algebra and terms t and τ are equal in algebra.

When studying any algebra one of the first questions turns out to be the
problem of the identification of all equations valid in it.

Definition 1. Given a set E of valid equations in a given language, a subset
E0 of E is said to be a base for E if every equation in E can be derived from
E0 by the identity axioms and by logical rules.

By derivation we mean the well known procedure (theorem of Birkhoff [1] of
the completeness of the calculus of equationally) whose description is following:

Let {bi(x1, x2, ..., xni) = βi(x1, x2, ..., xni) : i ∈ I} be a base. Then for any
valid equation t = τ in algebra it is possible to build a chain of equal terms
t ≡ t0 = t1 = ... = tk ≡ τ , such that each following term is obtained from
previous one by changing in it some subterm bi(θ1, θ2, ..., θni) to the subterm
βi(θ1, θ2, ..., θni) (or the contrary: changing a subterm βi(θ1, θ2, ..., θni) to the
subterm bi(θ1, θ2, ..., θni)).
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The finite base problem for a given algebra is the following: is there a finite
base for the set of equations which are valid in the algebra?

Earlier [4] the author found the infinite system of equal terms in the algebra
A = 〈R, ¬, ·, =〉, which cannot be derived from any finite system of valid
equations.

In the present work a negative answer to the finite base problem is given
for the set of all valid equations in the algebra A1.

Since some statements are proved in [4] but needed to understand the fol-
lowing text we give them without prove.

2 Corresponding polynomials, trivially equal and
trivial terms

To each term in algebra A (or A1) corresponds a polynomial, which takes the
same values as the term when real numbers are substituted to the variables. The
form of the corresponding polynomials is defined by induction on the complexity
of terms:

Definition 2. 1) To terms x, y, ...(, 1) of complexity 0 correspond the poly-
nomials x, y, ...(, 1).
2) If to the term t of complexity k corresponds the polynomial p then to the
term ¬t corresponds the polynomial 1− p.
3) If to the terms t and τ of complexity no greater than k correspond the poly-
nomials p and q then to the term t · τ corresponds the polynomial p ·q. (We
shall omit the symbol · of multiplication in polynomials when there is no danger
of confusion).

Since the values of any terms are equal to the values of the corresponding
polynomials then terms are equal in A (and A1) iff the corresponding polyno-
mials are equal.

We define new notions which are interest for independent study, and are
necessary for our main goal.

Definition 3. Two terms t and τ are said trivially equal terms in A (denote
this as t ∼= τ) if they can be derived from each other by chain of substitutions
using only equations ¬(¬(t)) = t, t1 · t2 = t2 · t1 and (t1 · t2) · t3 = t1 · (t2 · t3).
Definition 4. Two terms t and τ are said 1-trivially equal terms in A1

(denote this as t ∼=1 τ) if they can be derived from each other by chain of
substitutions using only equations ¬(¬(t)) = t, t1 · t2 = t2 · t1, (t1 · t2) · t3 =
t1 · (t2 · t3), t1 · 1 = t1 and t1 · ¬1 = ¬1.

Remark 1. Note that defined relations is reflexive, symmetric and transitive.
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Example 1. The terms ¬(x · ¬(y · x · ¬(y))) and ¬(x · y) · ¬(x · ¬(y)) are equal
in A and A1 but they are not trivially equal and not 1-trivially equal.

They are equal since correspond to the same polynomial 1−x+x2y−x2y2.
However using trivial equations from the first term it is possible to derive only
terms with an odd number of negations at the head; but the second term begins
by an even number (0) of these negations.

Remark 2. Further in this paper we omit the symbol · of term product and
brackets when there is no danger of confusion. We write ¬k instead k successive
negations.

Example 2. The following two terms are equal in A and A1 but not trivially
equal and not 1-trivially equal:

¬(x1¬(x2...¬(xn−1¬(xnx1¬(x2...¬(xn−1¬(xn))...)) =

¬(x1x2...xn)¬(x1¬(x2...¬(xn−1¬(xn))...)
(1)

where n is any positive even number.

They are equal since they correspond to the same polynomial 1−x1+x1x2−
...− x1x2...xn−1 + x2

1x2...xn− x2
1x

2
2x3...xn + ...− x2

1x
2
2x

2
3...x

2
n. However they are

not trivially equal for the same reason as in the Example 1.

Definition 5. A term t called trivial (1-trivial) iff any term equal to it in A
(A1) is trivially (1-trivially) equal to it.

Lemma 1. The term t is trivial if and only if the term ¬t is trivial.

Lemma 2. If the term t(x1, x2, ..., xn) is trivial then the term τ derived from t
by changing one variable into its negation (τ(x1, x2, ..., xi−1, xi, xi+1, ..., xn) ≡
t(x1, x2, ..., xi−1,¬xi, xi+1, ..., xn)) is also trivial.

Lemma 3. The terms of the forms (2) and (3) are trivial.

¬(x1x2...xk1¬(y1y2...yk2 ...¬(z1z2...zkn)...)), (2)

x1x2...xk1¬(y1y2...yk2 ...¬(z1z2...zkn)...). (3)

3 Simplifications of terms in algebra A1

Definition 6. A term S(t) derived from a term t of algebra A1 by reducing its
subterms by the rules: ¬(¬τ) = τ , τ · 1 = τ , 1 · τ = τ , τ · ¬1 = ¬1, ¬1 · τ = ¬1
is a simplification of a term t. Reductions are produced in any acceptable
order. Simplification of a term is minimal that is not further reducible term.
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Remark 3. For any term t its simplification S(t) ≡ 1 or S(t) ≡ ¬1 or S(t)
does not contain 1, since S(t) does not contain double negatives, and 1 and
¬1 may not occur as factors. Therefore, specifying special cases S(t) ≡ 1 and
S(t) ≡ ¬1, we can consider any simplification S(t) as a term of algebra A.

Proposition 1. For any term t of algebra A1 its simplification S(t) is equal to
the term t.

Proof. Note that the simplification rules (from the Definition 6) do not change
the value of the corresponding polynomial. And since the corresponding poly-
nomials for the terms t and S(t) are identical, then these terms are equal.

Theorem 1. For any term t of algebra A1 its simplification S(t) is uniquely
determined, ie the result does not depend on the order of reduction.

Proof. We prove the theorem by induction on the complexity of the term t.
The induction base is obvious: for the terms x and 1 their simplification

S(x) ≡ x and S(1) ≡ 1 are uniquely determined, since none of the reduction
rules are acceptable for them.

Suppose that the theorem is true for the terms whose complexity does not
exceed k. We will prove that it is also true for any term t, whose complexity is
equal to k + 1.

There are two cases of forming the last step of term t:
(i) t ≡ t1 · t2,
(ii) t ≡ ¬t1,
where the complexity of the subterms t1 and t2 do not exceed k.

In the first case simplification made in subterms t1 and t2 separately, and
possibly between them. If reductions occur only within subterms t1 and t2 (this
subcase occurs if the subterm t1 and t2 do not correspond to the polynomials
1 and 0), then by the induction hypothesis, the order of reduction of the term
t does not affect the final result, which is equal to S(t) ≡ S(t1) · S(t2).

The reduction between subterms t1 and t2 can occur only if one of these
subterms correspond to a polynomial of 1 or 0. If any of these subterms corre-
sponds to a polynomial 0, then S(t) ≡ ¬1. If any of these subterms corresponds
to a polynomial 1 (without loss of generality, let S(t1) ≡ 1), then S(t) ≡ S(t2),
and by the induction hypothesis, S(t2) is uniquely defined.

If in the second case the various simplifications did not arise reduction of
external negation, then, by induction hypothesis, S(t) is uniquely determined
by S(t) ≡ ¬S(t1). Reduction of external negation can occur only if at some step
of simplification instead a subterm t1 occur a subterm ¬t′. By the induction
hypothesis, simplifications S(t1) and S(t′) are uniquely defined, and S(t1) ≡
¬S(t′) or S(t′) ≡ ¬S(t1). In both cases, S(t) ≡ S(t′).

Example 3. The terms 1 and ¬1 are 1-trivial.
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Proof. Suppose that there exists a term t which is equal to the term 1 (t = 1),
then by Proposition 1, S(t) = S(1) = 1. Since the simplification rules are
derivable from the 1-trivial transformations (but not vice versa), then t ∼=1 1.
A proof is the same in the case t = ¬1.

Theorem 2. Simplifications of arbitrary terms t and τ have the following prop-
erties:
(i) t ∼=1 τ if and only if S(t) ∼= S(τ) in the algebra of A (in this case we assume
that trivial equations 1 ∼= 1 and ¬1 ∼= ¬1 are valid in the algebra A);
(ii) a term t is 1-trivial if and only if the term S(t) is trivial in the algebra A
(in this case we assume that terms 1 and ¬1 are trivial in the algebra A).

Proof. (i) Necessity. Let t ∼=1 τ . If t = τ = 1 or t = τ = ¬1 then S(t) ∼= S(τ)
since we assumed 1 ∼= 1 and ¬1 ∼= ¬1 in the algebra A. In general case there
is a chain of identities t ≡ τ0

∼=1 τ1
∼=1 ... ∼=1 τm ≡ τ , at each step using

only the equations from Definition 4. Then simplifications of the neighboring
terms τi and τi+1 in the chain will be trivially equal in the algebra A. Indeed,
the equations ¬(¬(t)) = t, t1 · 1 = t1 and t1 · ¬1 = ¬1 are the simplification
rules themselves. If S(τi) and S(τi+1) are different terms then between the
terms τi and τi+1 was applied either commutativity or associativity rule. Then
S(τi) ∼= S(τi+1) for any i. Therefore S(t) ∼= S(τ) in the algebra of A.

(i) Sufficiency. Let S(t) ∼= S(τ) in the algebra A. If t = τ = 1 or t = τ = ¬1
then proof is obvious since terms 1 and ¬1 are 1-trivial. In the general case
from S(t) ∼= S(τ) follows S(t) ∼=1 S(τ) since the rules of 1-trivial equations
contain all the rules of trivial equations. Since simplifications rules are deduced
from the 1-trivial transformations then t ∼=1 S(t) ∼=1 S(τ) ∼=1 τ .

(ii) Obviously follows from definitions and (i).

Corollary 1. If a term S(t) is trivially equal to the term of the form (2)
and (3), then this term S(t) is trivial in the algebra A (because of Lemma 3).
Therefore, because of ( ii), a term t is 1-trivial.

Theorem 3. Any base of valid equations in the algebra A1 is infinite.

Proof. If the algebra A1 has a finite base of equations we can assume that
it also contains 1-trivial equations which express the rules of commutativity,
associativity and the simplification rules ¬(¬(t)) = t, t1 ·1 = t1 and t1 ·¬1 = ¬1.
Then all the terms of the base (except the simplification rules) can be simplified
by Definition 6, and the resulting finite set of equations will remain the base of
the equations of the algebra A1. In the following text we shall use a simplified
base.

For a finite base there exists a positive even integer n which restricts the
number of variables in the base equations. Consider the equation (1) from
the Example 2. Then for this equation it is possible to construct a chain
of equations t ≡ t0 = t1 = ... = tk ≡ τ , where at each step used a base
transformation, the term t coincides with the left part, the term τ coincides
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with the right side of (1). Then the following chain of equations are valid
t ≡ S(t) ≡ S(t0) = S(t1) = ... = S(tk) ≡ S(τ) ≡ τ . Since the simplifications
S(t) and S(τ) are not trivially equal in the algebra A then there exists an index
i such that t ≡ S(t) ≡ S(t0) ∼= S(t1) ∼= ... ∼= S(ti) � S(ti+1). Then, by the
Theorem 2, t ≡ t0 ∼=1 t1 ∼=1 ... ∼=1 ti �1 ti+1.

Suppose that in step i it was applied a base transformation b(θ1, θ2, ..., θk) =
β(θ1, θ2, ..., θk), where k < n and θ1, θ2, ..., θk are subterms. Obviously, this
equation is not 1-trivial b(θ1, θ2, ..., θk) �1 β(θ1, θ2, ..., θk). Note also that
in the simplification procedure S(ti), by Theorem 1, we can first simplify
S(b(θ1, θ2, ..., θk)). Since ti �1 ti+1 and S(ti) �1 S(ti+1) the occurrence of
the term S(b(θ1, θ2, ..., θk)) in the term S(ti) is not reduced. It is possible prove
that each variable yj in the term S(b(y1, y2, ..., yk)) occurs no more than once
and the term S(b(y1, y2, ..., yk)) is trivially equal to the term of the form (2) or
(3). Then this term S(b(y1, y2, ..., yk)) is trivial in the algebra A (because of
Lemma 3), therefore it is 1-trivial. Contradiction.

Remark 4. In fact we proved a stronger statement: the set of all equations
valid in the algebra A1 has not any base in a finite number of variables.

Indeed, in the proof of Theorem we used only the fact that there exists a
restriction on the number of variables of the base equations and not used finite
or infinite the base of equations.

References

[1] G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Phi-
los. Soc. 31 (4), 433–454, 1935.

[2] B. Poizat, A course in model theory: an introduction in contemprary
mathematical logic, Springer, 2000.

[3] L. Zadeh, Fuzzy sets, Inform. and Control, 8, 338–353, 1965.

[4] A. Kungozhin, Non finite basing of one number system, Algebra and Logic,
Preprint.


