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Abstract. It is shown that a class of Steiner triple systems of order 2r−1, obtained
by some special switchings from the Hamming Steiner triple system, is embedded
into some perfect code, constructed by known switchings of ijk-components from
the binary Hamming code. The number of Steiner triple systems of order n and
rank less or equal n− log(n + 1) + 2, embedded into perfect binary codes of length
n, is given. Similar results are obtained for Steiner quadruple systems.

1 Introduction

There are a lot of open problems concerning Steiner triple (quadruple) systems,
including the problem of embedding of any Steiner triple (quadruple) system of
order n = 2r − 1 into some perfect (extended perfect) binary code of length n.

Let C̄ be any extended perfect code of length N = 2r, obtained from a
perfect code C of length n = 2r − 1, r ≥ 2, by parity checking. Further we
will only consider perfect and extended perfect binary codes, containing the
all-zero vector. It is known that the set of all vectors of weight 3 in the code
C defines a Steiner triple system of order 2r − 1 (briefly STS(2r − 1)), and the
set of all vectors of weight 4 in the code C̄ defines a Steiner quadruple system
of order 2r (briefly SQS(2r)). A Steiner triple (quadruple) system of order n
(N), corresponding to a binary (extended) Hamming code Hn (HN ), is called
Hamming Steiner triple system STS(Hn) (Hamming Steiner quadruple system
SQS(HN )). It is proved in [1] that only 33 among 80 nonisomorphic Steiner
triple systems of order 15 are embedded into perfect binary codes, and only
15590 among 1054163 Steiner quadruple systems of order 16 are embedded into
extended perfect binary codes.

A code C ′ = (C\M) ∪M ′ is obtained by a switching of some set M with
a set M ′ in a binary code C, see [2], if the code C ′ has the same parameters
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as C. Such set M is called a component of C. If M ′ = M ⊕ ei for some
i ∈ {1, 2, . . . , n}, where ei is the vector of weight 1 with the ones only in the
i-th coordinate, then the set M is called an i-component of the code C of length
n. Let α be a subset of the set {1, . . . , n}. The set M is called an α-component
of the code C, if it is an i-component for every i ∈ α, see [2]. A notion of
switching for t-(v, k, 1)-design is defined in a similar way. Two sets R and R′,
composed of k-element subsets of the set V , |V | = v, are called balanced with
each other, if every t-element unordered set from the k-element subsets of the
first set can also be found in the k-element subsets of the second set. It is said
that a t-(v, k, 1)-design A′ = (A\R)∪R′ is obtained by a switching of a block set
R with a block set R′ in a t-(v, k, 1)-design A, if the sets R and R′ are balanced
with each other (see, for example, [3]). The set R (and also R′) is also called a
component, see [4].

The rank of a code C in the vector space Fn is the dimension of the subspace
< C > spanned by the code C. Analogously we define the rank for any STS(n).
Tonchev [5] presented the description of all Steiner triple systems of order n =
2r − 1, r > 3 and of rank n− log(n + 1) + 1. He gave the number of different
STS(2r − 1) of rank 2r − r, which is one more than the (minimum possible)
rank of the Hamming code of length 2r. Similar results for SQS were obtained
in [6].

V. Zinoviev and D. Zinoviev [7] gave constructions which define all the
different Steiner quadruple systems of order N = 2r of rank at most 2r − r + 1;
the number of all such different Steiner quadruple systems, built with the help
of these constructions from a Steiner quadruple system of order N/4, equals to

2N+2 ·N ! · (N/4)! · 6N(N−4)/25 · 55296N(N−4)(N−8)/(3·29)

24N/4 ·N(N − 4)(N − 8) . . . (N −N/2)
. (1)

2 Steiner triple systems embedded into perfect codes

In this section, we develop a switching construction of Steiner triple systems,
embedded into perfect binary codes obtained by the switching method of ijk-
components. The construction is based on the following iterative method.
Let M = {1, 2, 3, . . . , m}, m ≡ 1, 3(mod 6), m > 1. Consider STS(m) of order
m with the ground set M . Let {i, j, k} be such a set that M ∩ {i, j, k} = ∅.
Using Table 1 (denoted by T ) and its elements we construct a set of triples
S(T, n) (see rules A, B below). Then we prove that S(T, n) is a Steiner triple
system of order n = 4m + 3.
Rule A. For any element a from the set M we consider the set of all elements
from its column (a ia ja ka)T in T and the set {i, j, k}. It is easy to see that
the set of 6 triples

{(i, ja, ka), (i, a, ia), (j, a, ja), (j, ia, ka), (k, ia, ja), (k, a, ka)} (2)
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Table 1:
1 2 . . . a . . . m

i i1 i2 . . . ia . . . im
j j1 j2 . . . ja . . . jm

k k1 k2 . . . ka . . . km

together with the triple (i, j, k) define a Steiner triple system STS(7) of order
7, also known as the Fano plane. The set (2) contains 3 Pasch configurations
{(i, ja, ka), (i, a, ia), (j, a, ja), (j, ia, ka)}; {(i, ja, ka), (i, a, ia), (k, ia, ja), (k, a, ka)};

{(j, a, ja), (j, ia, ka), (k, ia, ja), (k, a, ka)}. (3)

These Pasch configurations allow the known switchings i ↔ j, i ↔ k, j ↔ k
respectively. We include into S(T, n) either the set (2) or the set obtained from
(2) by a switching of one of the sets from (3). Since a is any element from the
set M and |M | = m we choose 6m triples to include them into the set S(T, n).
Rule B. For each triple (a, b, c) ∈ STS(m) we consider the set of all elements
from (a ia ja ka)T , (b ib jb kb)T , (c ic jc kc)T and construct 16 triples:

(a, b, c), (a, jb, jc), (ja, jb, c), (ja, b, jc),

(a, ib, ic), (a, kb, kc), (ja, kb, ic), (ja, ib, kc),

(ia, b, ic), (ia, jb, kc), (ka, jb, ic), (ka, b, kc),

(ia, ib, c), (ia, kb, jc), (ka, kb, c), (ka, ib, jc). (4)

For each element from the set {i, j, k} we associate rows, columns and trans-
versals from (4) by the rule: the element i corresponds to columns, the element
j corresponds to rows, the element k corresponds to the next transversals:

{(a, b, c), (a, kb, kc), (ka, b, kc), (ka, kb, c)};
{(a, jb, jc), (a, ib, ic), (ka, jb, ic), (ka, ib, jc)};
{(ja, b, jc), (ja, kb, ic), (ia, b, ic), (ia, kb, jc)};
{(ja, jb, c), (ja, ib, kc), (ia, jb, kc), (ia, ib, c)}. (5)

After that we follow to one of the next two variants:
B1. Choose an element i, j or k and consider the set of triples (4). Every row
and every column in (4) is a Pasch configuration and allows switchings. For
example, for the rows we can apply the switchings a ↔ ja, a ↔ ja, ia ↔ ka,
ia ↔ ka, for the columns we can apply the switchings a ↔ ia, a ↔ ia, ja ↔ ka,
ja ↔ ka, respectively. Moreover, 4 special transversals (5) also give Pasch



206 ACCT2012

configurations, which allow the switchings a ↔ ka, a ↔ ka, ja ↔ ia, ja ↔ ia. It
is easy to see that all the switchings give different triples. Therefore, we have
16 triples, partitioned into the subsets having 4 triples, in three different ways.
Each of that 4 triples define a Pasch configuration allowing a switching.
B2. Take an element i, j or k (for example, j) and apply the acceptable swit-
chings (from B1) first to all of the blocks corresponding to this element (to the
rows, in our case), after that – to some of the blocks, corresponding to one of the
other two elements from the set {i, j, k} (to the columns or transversals, in our
case). As a result, we get a set which is balanced with the initial set of triples
(4). We can similarly operate with the element i (k), i.e. with the columns
(transversals) of (4), applying the acceptable switchings first to all of them,
after that – to some of the rows or transversals (rows or columns, respectively).
As a result we get a balanced set with the initial set of triples (4).

Since |STS(m)| = m(m− 1)/6, choosing one of these two possible ways of
switchings for any triple (a, b, c) ∈ STS(m) to be included into S(T, n), we get
16×m(m− 1)/6 triples. We also include the triple (i, j, k) into S(T, n). From
the construction of the set S(T, n) we can see that |S(T, n)| = n(n− 1)/6 and
all the triples in S(T, n) are different, so the next theorem is true.

Theorem 1. The set S(T, n) is a Steiner triple system of order n = 4m + 3.

Corollary 1. Let STS(m) be the Hamming Steiner triple system. Then the
Steiner triple system S(T, n) of order n = 4m + 3, built by the rules A and B
taking the triples (2) and (4), is the Hamming Steiner triple system.

In [2], the method of ijk-components, letting us to do switchings of the
binary Hamming code, is adduced, and it is true the following

Theorem 2. (see [2]) Every binary Hamming code of length n can be presented
as an union of disjoint ijk-components Rt

ijk. Each of them can be represented
as an union of disjoint i-components Rpt

i :
Hn =

⋃N2
t=1 Rt

ijk =
⋃N2

t=1

⋃N1
p=1 Rpt

i , where N1 = 2(n−3)/4, N2 = 2(n+5)/4−log(n+1).

On the basis of the above-mentioned construction and Theorem 2, we obtain

Theorem 3. The class of Steiner triple systems of order n = 4m+3, obtained
by the switching construction of Theorem 1 using the Hamming Steiner triple
system STS(Hm) of order m, is embedded into the class of perfect binary codes,
constructed by the method of ijk-components from the binary Hamming code.

The rank of a perfect binary code of length n, constructed by switchings of
ijk-components from the binary Hamming code, is not more than n− log(n +
1) + 2, see [2]. Therefore, the rank of a STS(n), constructed by the switching
method of ijk-components from STS(Hn), is not more than n− log(n+1)+2.
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Theorem 4. The number R′(n) of different Steiner triple systems of order
n = 4m+3 of rank not more than n−log(n+1)+2, embedded into perfect binary
codes, equals to R′(n) = 4(n−3)/4 ·130(n−3)(n−7)/3·25 ·n(n−1)/6 ·R(H, (n−3)/4),
where R(H, m) = m!/(m(m − 1)(m + 1 − 22)(m + 1 − 23) · . . . · (m + 1)/2) is
the number of different STS(Hm) of order m.

Theorem 5. Any STS(n) of rank n−log(n+1)+1 is embedded in some perfect
code of length n with the same rank, the code is given by Vasil’ev construction
from the Hamming code of length (n− 1)/2.

The number of such different STS(n) is according to [5]: (2|STS(n−1
2

)| − n−1
2 −

2
n+1) · n!/|Sym(Hn−1

2 )|, where |Sym(Hn−1
2 )| = |GL(log(n+1

2 ), 2)|.
There were found additional switchings of the above construction, letting

us to obtain Steiner triple systems which are not embedded into perfect codes
constructed by the method of ijk-components from the Hamming code.

Theorem 6. The number R∗(n) of different Steiner triple systems STS(n) of
order n = 4m+3, which are not embedded into perfect binary codes constructed
by the method of ijk-components from the binary Hamming code, is at least
R∗(n) ≥ ((3(n−3)/4)!−6(n−3)/4) · ((n+1) ·4(n−7)/4 +n−3) ·310(n−3)(n−7)/3·25 ·
·n(n−1)/6 ·R((n−3)/4)−R′(n), where R((n−3)/4) is the number of different
STS((n− 3)/4).

3 Steiner quadruple systems embedded into exten-
ded perfect binary codes

The direct extention of the above switching construction of Steiner triple sys-
tems to Steiner quadruple systems is possible, but does not let us to enumerate
perfectly all the Steiner quadruple systems, corresponding to extended perfect
binary codes, constructed by the method of ijkl-components from the extended
binary Hamming code. To find out properly what kind of Steiner quadru-
ple systems are embedded into extended perfect binary codes, constructed by
the method of ijkl-components from the extended binary Hamming code, a
construction QN of SQS(N) of order N = 4m was considered. This construc-
tion is built from some SQS(m) and is a switching one, based on the well-known
Lindner construction [8]. Let us call this construction as the switching method
of ijkl-components for SQS. It follows from the construction that some of such
SQS(4m) are embedded into extended perfect binary codes. Because the prin-
ciples of building such Steiner triple and quadruple constructions have a lot in
common, and for brevity, we announce the obtained results without details.

It follows from [2] that the method of ijkl-components, as well as the ana-
logue of Theorem 2, are correct for extended perfect binary codes. On the basis
of these results and derived construction, one can get the following
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Theorem 7. The Steiner quadruple system, constructed by the switching method
of ijkl-components from the Hamming Steiner quadruple system SQS(HN ), is
embedded into some extended perfect binary code, constructed by the method of
ijkl-components from the extended binary Hamming code.

Theorem 8. The number R(N) of different Steiner quadruple systems SQS(N)
of order N of rank not more than N − logN +1, embedded into perfect extended
binary codes, constructed by the method of ijkl-components from the extended
binary Hamming code, is at least

(32 · 28 − 8)N(N−4)(N−8)/(3·29) · (2N(N−4)/25 − 1) · N(N−1)(N−2)
23 ·R(H,N/4),

where R(H,N/4) = (N/4)!/((N/4 − 1)(N/4 − 2)(N/4 − 22) · . . . · (N/4)/2) is
the number of different Hamming Steiner quadruple systems of order N/4.

This bound is less than (1), and the question if all of Steiner quadruple
systems from [7] are embedded into extended perfect binary codes, is still open.
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