Combinatorial generalizations of Jung's theorem¹

ARSENIY AKOPYAN akopjan@gmail.com Institute for Information Transmission Problems, Russian Academy of Sciences and Yaroslavl' State University.

Abstract. We consider combinatorial generalizations of Jung's theorem on covering the set with unit diameter by a ball. We prove "fractional" and "colorful" version of the theorem.

Well-known Jung's theorem state that any set with diameter 1 in \mathbb{R}^d can be covered by a ball with radius $R_d = \sqrt{\frac{d}{2(d+1)}}$ (see [1]).

The proof of this theorem is based on Helly's theorem:

Theorem 1 (Helly's theorem). Let \mathscr{P} be a family of convex compacts in \mathbb{R}^d such that intersection of any d + 1 of them is not empty, than intersection of all compacts from \mathscr{P} is not empty.

Helly's theorem has many generalizations. M. Katchalski and A. Liu in 1979 [3] proved "fractional" version of Helly's theorem and G. Kalai in 1984 [2] gave a strongest version of it. L. Lovász in 1979 suggested a "colorful" version of Helly's theorem. We give analogues generalizations of Jung's theorem.

Theorem 2 (Fraction version of Jung's theorem). For every $d \ge 1$ and every $\alpha \in (0, 1]$ there exists a $\beta = \beta(d, \alpha) > 0$ with the following property. Let \mathcal{V} be a *n*-point set in \mathbb{R}^d such that for at least αC_n^2 of pairs $\{x, y\}$ $(x, y \in \mathcal{V})$ distance between x and y less than 1. Then there exists a ball with radius R_d , which covers βn points of \mathcal{V} . And $\beta \to 1$ as $\alpha \to 1$.

We will use the following definition,

Definition 1. Call two nonempty sets V_1 and V_2 close, if for any points $x \in V_1$ and $y \in V_2$, the distance between x and y is not greater than 1.

It is easy to see that if two close sets \mathcal{V}_1 and \mathcal{V}_2 are given, diameter of each of them is not greater than 2. Moreover, the following theorem holds.

¹This research is supported by the Dynasty Foundation, Russian Foundation for Basic Research grants 10-01-00096 and 11-01-00735, and the Russian government project 11.G34.31.0053.

Theorem 3. Union of several pairwise close sets in \mathbb{R}^d can be covered by a ball of radius 1.

It is clear that the diameter of the cover ball in this theorem could not be decreased. The following two question have sense.

Suppose a family of pairwise close sets $\mathcal{V}_1, \mathcal{V}_2, \ldots, \mathcal{V}_n$ in \mathbb{R}^d is given.

- 1. What is minimal R, such that at least one of the set \mathcal{V}_i can be covered by a ball with radius R.
- 2. What is minimal D, such that at least one of the set \mathcal{V}_i has a diameter not greater than D.

Theorem 4. Let $\mathcal{V}_1, \mathcal{V}_2, \ldots, \mathcal{V}_n$ be pairwise close sets in \mathbb{R}^d . Then one of the set \mathcal{V}_i can be covered by a ball with radius R.

$$\begin{aligned} R &= \frac{1}{\sqrt{2}} \quad if \ n \leq d; \\ R &= R_d = \sqrt{\frac{d}{2(d+1)}} \quad if \ n > d. \end{aligned}$$

Through $D_d(n)$ we denote the minimal diameter of optimal spherical antipodal code of cardinality 2n on the unit sphere \mathbb{S}^{d-1} .

Theorem 5. Let $\mathcal{V}_1, \mathcal{V}_2, \ldots, \mathcal{V}_n$ be pairwise close sets in \mathbb{R}^d . Then one of the set \mathcal{V}_i has diameter not greater than

$$D = \frac{2}{\sqrt{4 - D_d(n)^2}}$$

References

- Danzer, L., Grünbaum, B., Klee, V.: Helly's theorem and its relatives. In: Proc. Sympos. Pure Math., Vol. VII, pp. 101–180. Amer. Math. Soc., Providence, R. I. (1963)
- [2] Kalai, G.: Intersection patterns of convex sets. Israel Journal of Mathematics 48(2), 161–174 (1984)
- [3] Katchalski, M., Liu, A.: A problem of geometry in \mathbb{R}^n . Proceedings of the American Mathematical Society **75**(2), 284–288 (1979)