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Abstract. We develop further our algorithm for obtaining nonexistence results
for spherical designs of odd strength and relatively small cardinalities. We show
how a procedure around a special triple of points in the design can be organized
to result in stronger bounds on the extreme inner products of some points. New
nonexistence results appear either in small dimensions and in the asymptotic process
when the strength is fixed and the dimension and cardinality tend to infinity in
certain relation.

1 Introduction

A spherical τ -design [8] is a spherical code C ⊂ Sn−1 such that for every point
x ∈ C and for every real polynomial f(t) of degree at most τ , the equality

∑

x∈C\{y}
f(〈ti(x)〉) = f0|C| − f(1), (1)

holds, where the number f0 is the first coefficient in the Gegenbauer expansion
f(t) =

∑k
i=0 fiP

(n)
i (t) and t1(x) ≤ t2(x) ≤ · · · ≤ t|C|−1(x) are all inner products

of x ∈ C with all other points of C. The number τ is called strength of C.
Polynomial techniques use suitable polynomials in (1) for obtaining bounds

on some inner products. Restrictions on the structure of spherical designs via
polynomial techniques were described in 1997 by Fazekas-Levenshtein [9] (see
also [10]) and proved to work for nonexistence results by Boyvalenkov-Danev-
Nikova [5] (see also [1, 2, 4]).

We study the smallest possible odd size of a τ -design on C ⊂ Sn−1 for fixed
n ≥ 3 and odd τ ≥ 3 in terms of lower bounds on

Bodd(n, τ) = min{|C| : C ⊂ Sn−1 is a τ -design with odd cardinality |C|}.
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2 Some preliminaries

Let the integers n ≥ 3, odd τ = 2k−1 ≥ 3, and odd M be fixed and let C ∈ Sn−1

be a spherical τ -design of odd size |C| = M . Then there exist (cf. [10, Section
4], [4]) uniquely determined real numbers −1 ≤ α0 < α1 < · · · < αk−1 < 1 and
positive ρ0, ρ1, . . . , ρk−1 such that the equality

f0 =
f(1)
M

+
k−1∑

i=0

ρif(αi) (2)

holds for every real polynomial f(t) of degree at most 2k− 1. The numbers αi,
i = 0, 1, . . . , k−1, are the roots of certain equation involving Jacobi polynomials.
We denote g(t) =

∏k−1
i=1 (t − αi)2 =

∑2k−2
i=0 giP

(n)
i (t) and 1 + γ(k − 1)! := θ for

short. Then (2) implies that g0 = ρ0|C|g(α0).
Some previous results are summarized in the following theorem. We denote

by Uτ,i(x) (respectively Lτ,i(x)) for any upper (resp. lower) bound on the inner
product ti(x), omitting x if the corresponding bound is valid for all x ∈ C. In
the asymptotic, we always assume that the dimension n is large enough to have
all corresponding bounds valid.

Theorem 1. [1,4,6] Let C ⊂ Sn−1 be a τ -design with odd strength τ = 2k− 1
and odd size M = |C|. Then ρ0|C| ≥ 2 and:

a) t1(x) ≤ Uτ,1 = α0 and t|C|−1(x) ≥ Lτ,|C|−1 = αk−1 hold for every point
x ∈ C;

b) there exist three distinct points x, y, z ∈ C such that 〈x, y〉 = t1(x) =
t1(y), 〈x, z〉 = t2(x) = t1(z) and 〈y, z〉 ≥ 2α2

0 − 1;
c) if M =

(
2

(k−1)! + γ
)

nk−1, where γ > 0 is constant, n tends to infinity,

then αi ∼ 0, for i = 1, 2, . . . , k − 1, θα0 ∼ −1; g(t) ∼ t2k−2, ρ0|C| ∼ θ2k−1 and
ρ0|C|g(α0) ∼ θ.

The inequalities 2 ≤ ρ0|C| ≤ a, a ∈ {3, 4}, correspond to γ <
2k−1√a−1
(k−1)! .

3 Different types of special triples

Let {x, y, z} ⊂ C be a special triple as in Theorem 1b). If t2(y) > α0 or
t2(z) > α0 we call such triple y-bad or z-bad, respectively. These cases are the
easiest in our algorithm and we refer for details in [3, 6, 7]. Here we add an
improving argument in the worse, in the sense of the analysis in [3, 6, 7], case,
namely when there are no special triples which are y-bad or z-bad.

Theorem 2. If there exist no bad triples in C then at least one of the following
holds:
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(i) there exists a special triple {x, y, z} ⊂ C such that t|C|−2(x) ≥ 2α2
0 − 1

and t|C|−2(z) ≥ 2α2
0 − 1;

(ii) there exists a point x′ ∈ C such that t3(x′) ≤ α0.

Proof. We start with a (non-bad) special triple (x, y, z) and consider the point
v1 ∈ C defined by 〈y, v1〉 = t2(y). Then 〈y, v1〉 = ti(v1) = t2(y) ≤ α0 (here
i ≥ 1) since the triple (x, y, z) is not y-bad. Now consider the point v2 ∈ C
defined by 〈v1, v2〉 = t1(v1) if i ≥ 2 or by 〈v1, v2〉 = t2(v1) if i = 1. In both
cases we have t2(v1) ≤ α0 – this is obvious in the first case and in the second
one the converse inequality 〈v1, v2〉 = t2(y) > α0 leads to a bad triple (y, x, v1)
(it would be what is z-bad).

It is easy to see that this procedure gives t2(vj) ≤ α0 for every newly
involved point vj ∈ C. Since C is finite, we will reach at some step a point
x′ ∈ C for second time. If x′ = z we obtain (i), otherwise x′ already has two
inner products which are less than or equal to α0 and we add third such inner
product, i.e. t3(x′) ≤ α0.

The argument in Theorem 2 can start from the point z of a special triple
(x, y, z). Then the end of the procedure could be y (then (i) follows) or other
point of C (then (ii) follows).

It is easy to see that the case (ii) in Theorem 2 necessarily leads to ρ0|C| ≥ 3.
The converse inequality was imperative in [3, 6]. Overcoming this is the major
improvement, given by Theorem 2.

4 New nonexistence results

For τ = 3, 37 cases with n ≤ 50 and ρ0|C| ≤ 3 (thus Theorem 2(i) holds in the
corresponding case) were left open after [3]. Our strengthening allows to rule
out 21 of them. The remaining 16 are listed here.

Theorem 3. Let C ⊂ Sn−1, 3 ≤ n ≤ 50, be a spherical 3-design with odd
cardinality M . Then ρ0|C| > 3 with possible exceptions in 16 cases: (n,M) =
(11, 27), (15, 37), (20, 49), (24, 59), (25, 61), (29, 71), (30, 73), (33, 81), (34, 83),
(38, 93), (39, 95), (42, 103), (43, 105), (44, 107), (47, 115), (48, 117).

Similarly, for τ = 5, our strengthened approach allows calculations in more
cases, namely in dimensions 25 ≤ n ≤ 50, which were not considered earlier.
Here we ruled out all cases with ρ0|C| ≤ 3 and some cases with ρ0|C| > 3 (in
total, 968 cases).

In the asymptotic, we consider again separately the three cases of a bad
triple, Theorem 2(i) and Theorem 2(ii) to find in each case the maximal possible
γ for which all nonexistence criteria follow.
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For example, we have Bodd(n, 3) & 2.421n and Bodd(n, 5) & 1.1245n2, com-
pared to Bodd(n, 3) & 2.3925n from [2] and Bodd(n, 5) & 1.12286n2 from [6].
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