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Moments of orthogonal arrays
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Abstract. We consider connections between the distance distributions and the
moments of orthogonal arrays. We combine information which can be derived by
polynomial techniques to obtain some characterization results.

1 Introduction

Let H(n, 2) be the binary Hamming space of dimension n. A binary orthogonal
array (OA), or equivalently, a τ -design C ∈ H(n, 2), consists of the rows of
an M × n matrix, M = |C|, such that every M × τ submatrix contains all
ordered τ -tuples of H(τ, 2), each one exactly M

2τ times as rows (in particular,
M is divisible to 2τ ). The maximal τ with this property is called strength of
the array. OA’s are important in the statistics, experimental mathematics, etc.
(see [4, 6]).

We consider H(n, 2) with the inner product 〈x, y〉 = 1− 2d(x,y)
n , where d(x, y)

is the Hamming distance between x and y. Then an equivalent definition of
OA (cf. [3, 6]) is convenient for the so called polynomial techniques.

Definition 1. A code C ⊂ H(n, 2) is an OA of strength τ if and only if for
every real polynomial f(t) of degree at most τ and every point x ∈ H(n, 2) the
equality ∑

y∈C

f(〈x, y〉) = f0|C| (1)

holds, where f0 is the first coefficient in the expansion f(t) =
n∑

i=1
fiQ

(n)
i (t),

Q
(n)
i (t) are the normalized Krawtchouk polynomials, i.e. Q

(n)
i (1) = 1 and ex-

plicitly

Q
(n)
i (t) =

1(
n
i

)
i∑

j=0

(−1)j

(
d

j

)(
n− d

i− j

)
, i = 0, 1, . . . , n,
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where d = n(1−t)
2 [1, 3, 6].

The Krawtchouk polynomials are the so-called zonal spherical functions for
H(n, s) and play very important role in obtaining characterizations of codes
and designs in H(n, 2). This can be justified, for example, by the identity

|C|f(1) +
∑

x,y∈C,x6=y

f(〈x, y〉) = |C|2f0 +
n∑

i=1

fi

ri

ri∑

j=1

(∑

x∈C

vij(x)

)2

, (2)

which holds for every real polynomial f(t) =
n∑

i=1
fiQ

(n)
i (t) of degree at most n.

Here ri =
(
n
i

)
, vij(x) are certain Boolean functions (cf. [5, 6]).

Definition 2. The numbers Mi = 1
ri

∑ri
j=1

(∑
x∈C vi,j(x)

)2, 1 ≤ i ≤ n, are
called moments of C.

The moments and the strength are connected by the fact that C is OA of
strength τ if and only if Mi = 0 for i = 1, 2, . . . , τ . Also, one has Mi = 0 for
every odd i if and only if C is antipodal (i.e. x ∈ C implies −x ∈ C).

2 Basic properties of the moments

We describe some properties of the moments which follow from Definition 2
and the identity (2). Assume that C ⊂ H(n, 2) is a τ -design.

Theorem 1. We have Mi = |C|+∑
x,y∈C,x 6=y Qi(〈x, y〉) for every i = 1, 2, . . . , n.

Proof. We set f(t) = Qi(t) in (2). Since fi = 1 and fj = 0 for j 6= i and
Qi(1) = 1 from the normalization, the assertion follows.

In particular, every moment Mi is a rational number whose denominator is
a divisor of the LCM of all denominators of the coefficients of Qi(t).

Denote tj = −1 + 2j
n and kj = |{(x, y) : 〈x, y〉 = tj}|, j = 0, 1, . . . , n.

Since all possible inner products are finitely many, we can easily obtain further
identities and bounds for the moments using in (2) polynomials with zeros in
many tj ’s.

Theorem 2. Let f(t) =
∏n−1

j=0 (t− tj) =
∑n

i=0 fiQ
(n)
i (t). Then

n∑

i=τ+1

fiMi = |C|(f(1)− f0|C|).
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Proof. We set f(t) in (2) and use that f(tj) = 0 for j = 0, 1, 2, . . . , n − 1, and
Mi = 0 for i = 1, 2, . . . , τ .

The next assertion counts some impact of the structure of C relaxing the
conditions on the polynomials used in (2).

Theorem 3. Let the polynomial f(t) =
∑k

i=0 fiQ
(n)
i (t) of degree k = n− 1 or

n vanishes at all but one of the points t0, t1, . . . , tn−1, say f(tj) 6= 0. Then

k∑

i=τ+1

fiMi = |C|(f(1)− f0|C|) + kjf(tj).

Proof. We set f(t) in (2) and use that f(t`) = 0 for ` 6= j, and Mi = 0 for
i = 1, 2, . . . , τ .

Theorem 3 can be further generalized to include more kj ’s. Similar as-
sertions can be combined with information on the distance distribution of C.
Indeed, Definition 1 allows calculation of all possible distance distributions of
C (with respect to fixed point [2]) and, similarly, (2) can be used for obtaining
all possible (k0, k1, . . . , kn−1).

For example, if n = 10, τ = 5 and M = 192 (the first open case for τ = 5
in the table of the book [4]) we obtain k0 ∈ A = {144, 146, . . . , 192}. Further,
for every k0 ∈ A, the even number k9 satisfies 0 ≤ k9 ≤ r, where r = k0 − 144.
Similarly, all possible values of all other ki’s can be found.

3 Orthogonal arrays and spherical codes

There is standard transformation from the binary Hamming space H(n, 2) to
the Euclidean sphere Sn−1 given by 1 → 1/

√
n and 0 → −1/

√
n in each co-

ordinate. For given τ -design C ⊂ H(n, 2) we denote by C its realization as
spherical code under the above transformation.

For Sn−1 viewed as polynomial metric space the Gegenbauer polynomials
are the counterparts of the Krawtchouk polynomials in H(n, 2). In particular,
the counterpart of the identity (2) is valid.

Theorem 4. If τ ≥ 3 then C is has at least strength 3 as a spherical design.
Moreover, all moments Mi, i = 4, 5, . . . , τ , of C as a spherical design can be
calculated.

Proof. The first assertion follows from the fact that the first four (up to degree
3) Gegenbauer and Krawtchouk polynomials coincide and Theorem 1 and its
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counterpart for Sn−1 can be applied. For the second assertion, we set in (2)
f(t) = ti for i = 4, 5, . . . , τ and use the observation that the left hand sides
of the obtained equalities coincide. Then we equate the right hand sides to
calculate consecutively the moments M4,M5, etc. of C.

Consider again the case n = 10, τ = 5 and M = 192 – it gives a spherical
3-design on S9 with moments M4 ≈ 187, 671 and M5 = 0. Further, for the
smallest k0 = 144 we have unique solution for all other ki, i = 1, . . . , 9 and this
implies M6 ≈ 389, 366, M7 ≈ 55, 4352, M8 ≈ 326, 391, etc, At the other end,
for k0 = 192, we obtain an antipodal spherical code with Mi = 0 for all odd i.
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