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Abstract. In this paper, we present a construction of orthogonal matrices over
the fields of characteristic two which to the best of our knowledge has attracted
minor attention in the existing literature. An interesting feature of the proposed
construction is that when applied iteratively very soon the matrices obtained become
sparse.

1 Introduction

It is well-known that orthogonal matrices (transforms) play an important role
in many branches of mathematics and physics (see, e.g. [1] and [2], respectively)
as well as they have numerous applications in contemporary information tech-
nologies (see, e.g. [3] – [5]). In mathematics, apart from the classical orthogonal
matrices over the field R of real numbers having great importance in the theory
of isometries, the orthogonal matrices over finite characteristic fields (in par-
ticular, over finite fields) were well studied too, for instance in connection with
some classes of linear codes (see, [6] and [7]).

An widely applicable approach to constructing new mathematical objects
(e.g., matrices, codes, etc.) is by making use of similar objects of smaller
sizes, orders or dimensions (see, e.g. [8], [9], etc.). In this paper, we apply
such an approach to yield orthogonal matrices over field of characteristic two,
starting with matrices of four times smaller size. The origins of the proposed
construction could be found in [10].

The paper is organized as follows. In the next section we give some necessary
definitions and preliminaries. In Section II and Section III, we present our
results and examples, respectively, and the paper ends with some conclusions.

1This research is partially supported by WCU R32-2012-000-20014-0, NRF, Korea.
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2 Preliminaries

First, we recall some definitions.

Definition 1. A square matrix A of size n over the filed F is said to be or-
thogonal if

AAT = I,

where I denotes the identity matrix of the same size, and (as usually) the no-
tation MT is used for the transpose matrix of a given matrix M.

Note also, that Definition 1 implies that A is an orthogonal just when
AT = A−1, and hence AT (AT )T = ATA = I, i.e. AT is an orthogonal matrix
as well.

Definition 2. The ratio ∆(A) = N/n2, where N is the number of nonzero
entries of a square matrix A of size n, we call density of that matrix.

An non-singular matrix must contain in each row/column at least one
nonzero entry. Therefore, for the density of a such matrix A of size n, we
have the following lower bound:

1/n ≤ ∆(A).

In particular, this bound is valid for the orthogonal matrices.

Definition 3. A square matrix P that has exactly one nonzero entry in each
row and each column is said to be permutation matrix.

The matrices which are simultaneously permutation and orthogonal over
some field could be easily characterized. Namely, every non-zero element of
such a matrix equals either to 1 or to −1. Therefore over field of characteristic
two, every permutation orthogonal matrix is a binary matrix.

Note also, that the lower bound for the density of non-singular matrices
is achieved in the set of permutation matrices, i.e. for arbitrary permutation
matrix P of size n, we have: ∆(P) = 1/n.

3 The construction

At the beginning of this section, we again underline that all matrices considered
in this paper are square matrices.

Let M be a matrix of size n, and O and I denote the all-zero and the iden-
tity matrix of the same size, respectively. We introduce two matrix operators
A∗ and B∗ involving M.
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• A∗ maps the matrix M into a matrix of size 2n defined as:

α(M) =
(

I O
M I

)

• B∗ maps the matrix M into a matrix of size 2n defined as:

β(M) =
(

M MT

MT M

)

Below, for the sake of simplicity with some abuse of notations we shall write
A∗ instead of α(M), and B∗ instead of β(M) when the matrix-operand is known
by default.

Now, we state the following three simple lemmas.

Lemma 1. For arbitrary matrix M over a field of characteristic 2, it holds:

A∗2 + (A∗T )2 = O2, (1)

where O2 is the all-zero matrix of size twice the size of M.

Lemma 2. For an orthogonal matrix M over a field of characteristic 2, it
holds:

A∗A∗T + A∗T A∗ = I2, (2)

where I2 is the identity matrix of size twice the size of M.

Lemma 3. For arbitrary matrix M, it holds:

B∗B∗T =
(

MMT + MTM M2 + (MT )2

M2 + (MT )2 MMT + MTM

)
. (∗)

For a given matrix M of size n, let Γ∗ be the matrix operator that maps M
into a matrix defined as: γ(M) = β(α(M)). As a 4×4 block structured matrix
γ(M) looks as:

γ(M) =




I O I MT

M I O I
I MT I O
O I M I




The main theorem of this paper is stated as follows.

Theorem 1. For arbitrary orthogonal matrix A over a field of characteristic
two, the operator Γ∗ defined above maps A into an orthogonal matrix.
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Proof. The proof follows by equation (*) substituting M with A∗ = α(A), and
then taking into account the equations (2) and (1).

The next proposition is about the density of the matrices obtained by Γ∗.

Proposition 1. For arbitrary matrix M of size n, it holds: ∆(γ(M)) = 1
2 ∗

1/n + 1
4∆(M).

In many cases of interest it might be useful to repeat iteratively the described
construction. More formally, starting from some initial orthogonal matrix A0

over a field F with char(F) = 2, let us define Am = γ(Am−1), for m = 1, 2, . . ..
By Theorem 1, the matrix Am will be an orthogonal matrix over F of size 4m×
size of A0.

By induction on m it can be proven a proposition about the density of Am

in terms of the size and density of the initial matrix A0.

Proposition 2. Let A0 be a matrix of size n. Then for the density of the
matrix Am defined above, it holds:

∆(Am) =
m

22m−1
.
1
n

+
1

4m
∆(A0).

Corollary 1. If a permutation matrix P is picked up as initial seed in the above
described iterative procedure then the density of the matrix Am obtained after
the m−th stage, m ≥ 1, is:

∆(Am) =
2m + 1

4m
∆(P).

The above proposition and subsequent corollary show sub-exponential de-
creasing in the density of the constructed matrices when m increases.

4 Examples

To illustrate the construction, we shall present two examples.

Example 1. The first example is the simplest possible where P0 = (1). The
matrix P1 = γ(P0) is the following:

P1 =




1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1
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Let A16 be the tensor square of the matrix P1. A16 is an orthogonal matrix,
too. The 16×32 matrix [I16|A16] is a generator matrix of a linear code of length
32 having the following weight distribution:

(0, 1), (6, 32), (8, 300), (10, 1952), (12, 6976), (14, 14400), (16, 18214),
(18, 14400), (20, 6976), (22, 1952), (24, 300), (26, 32), (32, 1),

and automorphism group of order 23040. This self-dual code is not an optimal
(the minimum weight of the optimal self-dual codes of length 32 being 8) but
it is included in the table of the self-dual codes of that length given in [11, p. 19].

Example 2. Let F be an arbitrary field with char(F) = 2, and θ be an arbitrary
element of F . Denote θ̄ = θ + 1. The identities θ2 + θ̄2 = 1 and θθ̄ + θ̄θ = 0
can be easily checked. They imply that the following

A0 =
(

θ θ̄
θ̄ θ

)

is an orthogonal matrix over F , so that A0 can be used as a seed in the described
construction. For instance, A1 = γ(A0) looks as:

A1 =




1 0 0 0 1 0 θ θ̄
0 1 0 0 0 1 θ̄ θ
θ θ̄ 1 0 0 0 1 0
θ̄ θ 0 1 0 0 0 1
1 0 θ θ̄ 1 0 0 0
0 1 θ̄ θ 0 1 0 0
0 0 1 0 θ θ̄ 1 0
0 0 0 1 θ̄ θ 0 1




Let us also remark that all 2× 2 orthogonal matrices over F are of the form of
A0 for some θ as it can be easily proven.

5 Conclusion

In this paper, we have focussed on a little popular construction of orthogonal
matrices over the fields of characteristic two. When this construction is applied
iteratively, we prove that the density of the produced matrices decreases sub-
exponentially with the number of iterations. This feature may be advantageous
in applications where sparse orthogonal matrices are preferable.
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