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Abstract. In this work we solve the packing problem for complete (n,3)-arcs
in PG(2,16), determining that the maximum size is 28 and the minimum size is
15. Both the complete (28,3)-arc and the complete (15,3)-arc are unique up to
collineations.

1 Introduction

In the projective plane PG(2, q) over the finite field GF'(q), an (n,r)-arc is a set
of n points no (r 4+ 1) of which are collinear containing r collinear points. An
(n,r)-arc is called complete if it is not contained in a (n + 1, r)-arc of the same
projective plane. An (n,2)-arc is called n-arc. For a more detailed introduction
to (n,r)-arcs and (n, 3)-arcs see 7], [8]. The largest size of (n, r)-arcs of PG(2, q)
is indicated by m,(2,¢). In [8] bounds for m,(2,¢) and the relationship among
the theory of complete (n,r)-arcs, coding theory and mathematical statistics
are given. In particular for ¢ > 4, m3(2,q) < 2¢ + 1 holds (see [11]).

Arcs and (n,3)-arcs in PG(2,q) correspond to respectively MDS and NMDS
codes of dimension 3 (see [6] for a more detailed introduction to NMDS codes).
These types of linear codes are the best in term of minimum distance, among
the linear codes with the same length and dimension. In general (n, k)-arcs in
PG(2,q) correspond to linear codes with Singleton defect equal to k — 2.

In this work we solve the packing problem for complete (n, 3)-arcs in PG(2,16),
determining that the maximum size is 28 and the minimum size is 15. Both the
complete (28, 3)-arc and the complete (15, 3)-arc are unique up to collineations.
These results have been obtained by computer search; Section 2 contains the
description of the algorithm used, while Section 3 contains the results about
the extremal (n,3)-arcs in PG(2,16). Section 4 contains bounds on the sizes
of the extremal (n, 3)-arcs in PG(2,17) and PG(2,19) obtained using the same
algorithm.

2 Algorithm

The base algorithm used is the same described in [9]. The algorithm uses iso-
morphism rejection and introduces constraints on the structure of the solution,
as in this kind of problems some strategies have to be used to reduce the search
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space since there are many equivalent parts of the search space and a large
number of copies of equivalent solutions could be found. The first constraint is
based on the following theorem (see [3]).

Theorem 1. An (n,3)-arc K in PG(2,q), n > a+ (g), contains an arc of size
a+1.

The algorithm searches for complete (n,3)-arcs containing arcs of a fixed
size s and, at least in principle, not containing arcs of size s + 1. The search is
divided into three steps.

1. All the non-equivalent arcs C? of a certain size s complete and non-
complete are generated.

2. The classification process continues extending each arc C! as (t,3)-arc
until it reaches the level s + h (usually h = 1,2, 3).

3. When all the non equivalent (s+h, 3)-arcs are generated, the leaves are ex-
tended to reach the desired length using a backtracking algorithm. Since
the extension processes are independent of each other, it has been possible
to realize a simple but efficient example of data parallelism. During the
extension phase the information obtained in the classification is used to
further reduce the search space.

However, when looking for mg3(2,16), the great number of leaves in the tree
and of levels in the backtracking search makes impossible ending the tasks in a
reasonable time. The most difficult cases are those starting from arcs of sizes 9
and 10.

The first problem of the algorithm described previously is that, searching for
complete (n, 3)-arcs containing an (s, 2)-arc, during the backtracking we cannot
avoid that the (¢, 3)-arcs considered contain an arc of size greater than s. Such
a (t,3)-arc should not be considered since it has been examined when starting
from (s',2)-arcs, with s’ > s. In order to avoid the greatest possible number of
such (¢,3)-arcs, the following two ideas are used.

1. Before starting the backtracking algorithm, some information is com-
puted. Let C’ be the (n, 3)-arc to extend and C' be the (s, 2)-arc contained
in C’. The program computes all the pairs (P,Q), P,Q € PG(2,q)\ C’
such that:

JReC|(C\{R})U{P,Q} is an (s+ 1,2)-arc.
The program collects all these pairs in a table. When adding a point P

to the partial solution, all the points @ such that the pair (P, Q) is in the
table are avoided.
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2. The technique described in the previous point does not assure that a
(n,3)-arc generated during the backtracking does not contain an (s +
1,2)-arc. In fact it is possible that there exist Rp,...,R, € C and
Py,...,Py1 € PG(2,9)\ (' such that (C\{R1 e ,Rz}) U {P1, ceey Pg_H}
is an (s+1,2)-arc. To reduce the number of these cases, a random control
has been added. In this way it is possible to control at a certain level of
the backtracking if the the partial solution contains an arc too big and
therefore can be pruned.

Another idea is taken from [5]. It introduces a constraint on the structure of
the solution concerning the distribution of the candidates points on the secants
of the (s,2)-arc. This technique is more effective when searching for big (n, 3)-
arcs and it has been applied when searching for complete (n,3)-arcs of size
28 < n < 33 containing an arc of size 8,9 or 10.

3 Results

We establish the maximum and the minimum sizes of complete (n,3)-arcs in
PG(2,16) and classify such extremal (n, 3)-arcs.

Theorem 2. The mazimum size of complete (n,3)-arcs in PG(2,16) is 28.
There exists a unique (28,3)-arc.

Proof. We performed an exhaustive search of (n,3)-arcs in PG(2,16) of size
greater than 28 and we found no examples. Moreover we have an example of
complete (28, 3)-arc (see [4], [3]). An exhaustive search showed that this is the
unique example of (28, 3)-arc in PG(2,16). O

This complete (28,3)-arc is an example of (1,18)-saturating set with u-
density § = 1.285714 (see [2]).

For the computer searches, we used a 3.2 Ghz Intel Exacore 16 Gb of mem-
ory.
Table 1 describes in detail the execution time of the search for (n,3)-arcs,
n > 29, in PG(2,16).

Table 1: Execution time of the search for (n,3)-arcs in PG(2,16) with n > 29
containing an arc 4

| Al 8 9 10 |11 (12 | 13| 14 15 16 17
Time |2d(22d|{20d|{4d|2d|1h|llm|2m|<1m|<8s
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Table 2: The complete (15, 3)-arc
Points ‘fo‘gl‘fg‘fg‘G‘

10011111 1111111
01010122 49911111313 |92|138| 12|31 | &3
00111185101028 2 11 1 12

The search for complete (28, 3)-arcs in PG(2, 16) lasted about 132 days of total
CPU time. Both searches have been performed exploiting data parallelism as
described in the previous section.

In the language of coding theory, Theorem 2 can be rewritten as:
Theorem 3. No [29,3,26]16-code exists.

The following corollary closes, for h < 27, some open cases in tables of [10]:
Corollary 4. No [29 + h,3 + h, 26]15-code exists, h > 1.

We are extending the unique (28, 3)-arc found in order to obtain a [29, 4, 25]-
NMDS code. The process is in progress (done 85%).

Conjecture 5. There exists no [29,4,25]16 NMDS code.

Theorem 6. The minimum size of complete (n,3)-arcs in PG(2,16) is 15.
There exists a unique complete (15, 3)-arc.

Proof. We performed an exhaustive search of (n,3)-arcs in PG(2,16) of size
less than 15 and we found no examples (execution time: 11 days). Moreover we
proved that there exists only one complete (15,3)-arc up to collineations (see
Table 2) and it contains a (9,2)-arc, but not a greater arc. The classification
lasted 45 days. O

In Table 2 we denote GF(16) = {0,1 = a°,2 = a!,...,15 = a'*} where
« is a primitive element such that a* + a® + 1 = 0. In all the tables, the
columns ¢; indicate the number of i-secants of the (n,3)-arc and G indicates

the description of the stabilizer group. In Table 2 we consider the stabilizer
group in PT'L(3,16).

4 On extremal (n,3)-arcs in PG(2,17) and PG(2,19)

Using the algorithms described in Section 2, we performed partial searches in
PG(2,17) and in PG(2,19) in order to find examples and bounds on the size of
complete (n,3)-arcs of extremal size. Some examples, obtained using a partial
classification, are presented in Tables 3,4,5. The following theorems hold.
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Table 3: (18, 3)-arcs in PG(2,17), containing an arc A

Al Points [ b 6 [6]6]G]
10010111111 1111111

9101011133449 101012131314 14 |94|144(27|42|7Z,
0011257134513 3 4 0 1 2 2 7
1001011111 1 1 111111

10010111223 3101012131515 16 16 |97 13536397,
0011584117124 7 9 1 0 16 8 16

Table 4: (31, 3)-arcs in PG(2,19), containing a 14-arc

l Points [@0 [@1[(2[@3 [Gl
i001011111111111111111111111111
010110122344 566 7 788 9 1011111215151616 1717 18(101|65(90({125|Z1
001114513518761110317161761812 4 4 8 123 8 0 1 2 9 9
100101111111 11111111 11111111111
01011 0122344 5 7 788 9910111112131314 1516 16 18 18 |96 (80|75|130|Z1
001114168591671210141531804 6 1217 3 6 14 7 8 1017 4 15
i001011111111111111111111111111
0101101223445 566 788 9 1011111215151616 1717 18(100|68|87[126|Z1
001114513518761110163171661812 4 4 8 123 8 0 1 2 9 9
1001011111 11111 111111111111 1111
0101123445566 77 8 8 9 9101012131314 151516 16 18 18 |92 |92|63|134|Z4
001113576971001061614181213 1 4 4 1213 8 8 16 5 15 9 14

Theorem 7. There exist no complete (n,3)-arcs in PG(2,17), with n > 28
containing an arc of size greater than 12.

Theorem 8. There exist no complete (n,3)-arcs in PG(2,17), with n < 17
containing an arc of size less than 8. The smallest size of complete (n,3)-arcs

in PG(2,17) is at most 18.

Theorem 9. The maximum size of complete (n,3)-arcs in PG(2,19) is at least
31. There exist no complete (n,3)-arcs in PG(2,19), with n > 31 containing
an arc of size greater than 14.

Theorem 10. The smallest size of complete (n,3)-arcs in PG(2,19) is at most
20.

Proof. We have found several examples of complete (20,3)-arcs (see [1]); in
Table 5 we present one example containing a 10-arc. ]
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Table 5: (20, 3)-arcs in PG(2,19), containing a 10-arc

Points [fo[fllézlgglcr]

11111 1 1 11
5 68 8 12 13 15 15 17 121 | 170 | 40 | 50 | Z4
02418 11 17 8 10 18
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