
Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory
June 15-21, 2012, Pomorie, Bulgaria pp. 73–76

Classification of minimal 1-saturating sets in
PG(2, q), q ≤ 23

Daniele Bartoli {daniele.bartoli}@dmi.unipg.it
Giorgio Faina, Stefano Marcugini, Fernanda Pambianco

{faina,gino,fernanda}@dmi.unipg.it
Dipartimento di Matematica e Informatica, Università degli Studi di Perugia

Abstract. Minimal 1−saturating sets in the projective plane PG(2, q) are consid-
ered. They correspond to covering codes which can be applied to many branches of
combinatorics and information theory, as data compression, compression with dis-
tortion, broadcasting in interconnection network, write-once memory and steganog-
raphy (see [3] and [2]). The classification of all the minimal 1-saturating sets in
PG(2, 9) and PG(2, 11) and the classification of minimal 1-saturating sets of the
smallest size in PG(2, q), 16 ≤ q ≤ 23 are given. These results have been found
using a computer-based exhaustive search that exploits projective equivalence prop-
erties.

1 Introduction
Let PG(n, q) be the n-dimensional projective space over the Galois field GF (q).
For an introduction to such spaces and the geometrical objects therein, see [8]
- [11].

Definition 1. A point set S in the space PG(n, q) is %-saturating if % is the
least integer such that for any point x ∈ PG(n, q) there exist % + 1 points in S
generating a subspace of PG(n, q) in which x lies.

Definition 2. [14] A %-saturating set of l points is called minimal if it does
not contain a %-saturating set of l − 1 points.

A q-ary linear code with codimension r has covering radius R if every r-
positional q-ary column is equal to a linear combination of R columns of a
parity check matrix of this code and R is the smallest value with such property.
For an introduction to coverings of vector spaces over finite fields and to the
concept of code covering radius, see [3].
The points of a %−saturating set in PG(n, q) can be considered as columns
of a parity check matrix of a q-ary linear code with codimension n + 1. So,
in terms of the coding theory, a %−saturating l-set in PG(n, q) corresponds
to a parity check matrix of a q-ary linear code with length l, codimension
n + 1, and covering radius % + 1 [4], [7], [12]. Such code is denoted by an
[l, l− (n+1)]q(%+1) code. Covering codes can be applied to many branches of
combinatorics and information theory, as data compression, compression with
distortion, broadcasting in interconnection network, write-once memory and
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steganography (see [3] and [2]).
Note that a %-saturating set in PG(n, q), % + 1 ≤ n, can generate an infinite
family of %-saturating sets in PG(N, q) with N = n+(%+1)m, m = 1, 2, 3, . . .,
see [3, Chapter 5.4], [4], [5, Example 6] and references therein, where such
infinite families are considered as linear codes with covering radius % + 1.
In the projective plane PG(2, q) over the Galois field GF (q), an n−arc is a set

of n points no 3 of which are collinear. An n-arc is called complete if it is not
contained in an (n + 1)-arc of the same projective plane. The complete arcs
of PG(2, q) are examples of minimal 1-saturating sets, but there are minimal
1-saturating sets that are not complete arcs. Properties of the %-saturating sets
in PG(n, q) are presented in [6].

2 The computer search for the non-equivalent min-
imal 1−saturating sets

Our goal is to determine the classification of saturating sets up to projective
equivalence in PG(2, q). The problem of finding non-equivalent geometrical
structures is very popular in literature (see [8], [9], [10], [11]). In [13] the full
classification of minimal 1-saturating sets in PG(2, q), q ≤ 8, the classification
of minimal 1-saturating sets in PG(2, q) of smallest size for 9 ≤ q ≤ 13 and the
determination of the smallest size of minimal 1-saturating sets in PG(2, 16) are
presented.
In this work we perform an exhaustive search using a backtracking algorithm.
Some strategies have to be used to reduce the search space, as in this kind
of problems there are many equivalent parts of the search space and a large
number of copies of equivalent solutions could be found. The program starts
classifying the sets in PG(2, q) containing the projective frame, until a certain
size k. We only searched for minimal 1-saturating sets containing a projective
frame, since the following theorem holds.

Theorem 1 In PG(2, q) there exists a unique minimal 1-saturating set not
containing a projective frame. It consists of a whole line and an external point.
Its stabilizer has size |PGL(3,q)|

q2(q2+q+1)

(
or |PΓL(3,q)|

q2(q2+q+1)

)
.

Then the sets of size k are extended using backtracking. During the back-
tracking some information obtained during the classification phase is used to
further prune the search space. The sets are tested for the saturating property
and the minimality condition. See [1] for a detailed description.
The following tables present the results obtained. In particular we perform the
classification of all the minimal 1-saturating sets in PG(2, 9) and PG(2, 11)
and the classification of the minimal 1-saturating sets of the smallest size in
PG(2, q) with 16 ≤ q ≤ 23.
We found no examples of minimal q+2-saturating sets in PG(2, 9) and PG(2, 11)
containing the projective frame and then the unique example is that one de-
scribed above. In the following table we describe the results obtained, in par-
ticular the type of the stabilizer group of the minimal 1-saturating sets of size
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k. With the symbol Gi we denote a group of order i; for the other symbols we
refer to [15]. If q is prime we consider stabilizer groups in PGL(3, q), otherwise
in PΓL(3, q). When complete arcs exist, their number is indicated in bold font.

PG(2, 9)

k = 6 G120: 1

k = 7 Z4: 1 G42: 1 G120: 1

k = 8
Z1: 88 Z2: 52 Z2 × Z2: 11 S3: 1
Z2 × Z4: 1 D4: 1 D6: 3 G16: 1+1
G24: 2 G48: 1

k = 9
Z1: 667 Z2: 87 Z3:9 Z2 × Z2: 4
S3: 2 D4: 1 D6: 1 G16: 1
G48: 1

k = 10
Z1: 58 Z2: 22 Z4:5 Z2 × Z2: 4
D4: 2 G16: 1 G20: 1 G32: 1+1
G1440: 1

k = 11 G11520: 1

PG(2, 11)

k = 7 Z7 o Z3: 1

k = 8 Z1: 22 Z2: 26+5 Z2 × Z2: 2+1 D4: 1 + 1
D5: 1 G16: 1

k = 9 Z1: 10686 Z2: 265+1 Z3: 40 +1 Z4: 2
Z2 × Z2: 3 S3: 10+1 Z10: 1 Q6 : 1

k = 10
Z1: 115731 Z2: 1332 Z3: 31 Z4: 15
Z2 × Z2: 13 Z5: 2 S3: 8 D4: 2

D5: 2 Z10: 1Q6 :1 G60:1

k = 11 Z1: 30802 Z2: 147 Z4: 1 Z2 × Z2: 3
D4: 3

k = 12 Z1: 119 Z2: 7 Z3: 5 S3: 1
Q6: 1 G20: 1 G1320: 1

k = 13 G13200: 1

q = 16

k = 9 Z3: 1 Z6: 1 D6: 1 G54: 1

k = 10

Z1: 7744+342 Z2: 699+130 Z3: 3 Z4: 12+8
Z2 × Z2: 27+4 Z6: 2 S3: 4+3 D4: 8
Z2 × Z2 × Z2: 18+10 Q6: 1 Z4 × Z4: 1 G16: 4+3
G20: 1 G24: 1 G32: 1 G48: 1

q = 17 k = 10
Z1: 2591+341 Z2: 460+179 Z3: 8+10 Z4: 4+7
Z2 × Z2: 5+8 S3: 7+9 D4: 4 Q4: 1
Q6: 2 G16: 1+1 G18: 1 G24: 1

q = 19
k = 10

Z1: 1+1 Z2: 6+18 Z3: 1 Z4: 1
Z2 × Z2: 2 S3: 2 D5: 2 Q6: 1
G60: 1

q = 23 k = 10 S3: 1
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