The Goldreich-Levin algorithm with reduced complexity $^{1} \ \,$

AMERIAH SALEM ABDOULIameirah.abdouli@kustar.ac.aeKhalifa University of Science, Technology and Research(KUSTAR)& NKC,UAEILYA DUMERdumer@ee.ucr.eduUniversity of California at Riverside, USAGRIGORY KABATIANSKYkaba@iitp.ruKUSTAR, UAE, on leave from ITTP RAS, MoscowCEDRIC TAVERNIERtavernier.cedric@gmail.comNKC,UAE

Abstract. The celebrated Goldreich-Levin algorithm performs randomized list decoding of the Reed-Muller codes $\operatorname{RM}(1,m)$ of length $n = 2^m$ within the decoding radius $\frac{n}{2}(1-\epsilon)$ for any $\epsilon > 0$, and achieves a low decoding error probability of 2^{-s} with a polylogarithmic complexity sm/ϵ^4 . The deterministic, error-free, Green algorithm performs complete maximum likelihood decoding with complexity $n \ln^2 n$. We combine the two algorithms and reduce the complexity of the Goldreich-Levin algorithm to the order of sm/ϵ^2 . Here the output can include the information blocks of ϵ^{-2} reconstructed codewords, which require m/ϵ^2 bits, and the order of sm/ϵ^2 gives the lowest complexity known for any given ϵ . Another particular case is nearcapacity decoding, wherein we take parameter ϵ of a vanishing rate m/\sqrt{n} . Then the proposed algorithm has complexity order of $n \ln^2 n$, instead of the quadratic order n^2 of the Goldreich-Levin algorithm.

1 Introduction

Decoding of the first-order Reed-Muller codes $\operatorname{RM}(1,m)$ has been addressed in many papers since 1960s. In particular, the maximum likelihood algorithm designed by Green [1] for codes $\operatorname{RM}(1,m)$ uses Fast Fourier Transform (FFT) and sorts out all codewords with respect to their distances from the received vector. The algorithm requires the order of $n \ln^2 n$ bit operations, where $n = 2^m$ is the code length. For any $\epsilon \in (0, 1)$, the deterministic algorithm of [6] performs error-free list decoding of any received vector \mathbf{g} within the decoding radius of $\frac{n}{2}(1-\epsilon)$ and requires a linear complexity order of $n \ln^2 \epsilon$.

In the area of randomized algorithms, a major breakthrough was achieved by Goldreich and Levin [2], with later refinements of [3]- [5]. For any received

¹The work of I. Dumer was supported by NSF grant 1102074 and ARO grant W911NF-11-1-0027. The work of G.Kabatiansky was supported by RFBR grants 11-01-00735 and 12-01-00905.

vector **g**, any fixed positive number s > 1 and fixed number $\epsilon \in (0, 1)$, the latest version [5] of the Goldreich-Levin (GL) algorithm has low poly-logarithmic complexity $(sm \ln m) / \epsilon^4$ as $m \to \infty$, and with high probability $1 - 2^{-s}$ retrieves all codewords of RM(1, m) within the decoding radius $\frac{n}{2}(1 - \epsilon)$.

For fixed parameters ϵ and s, the GL algorithm drastically reduces the asymptotic complexity of the error-free algorithms [1] and [6]. On the other hand, note that near channel capacity, we can consider the decoding radius $\frac{n}{2}(1-\epsilon)$ of the code RM(1,m) with vanishing parameter $\epsilon = m/\sqrt{n}$ as $n \to \infty$. In this case, the GL algorithm has unacceptably high complexity of quadratic order n^2s . Therefore, our main goal is to reduce complexity of the GL algorithm in parameter ϵ . Below we consider general parameters $\epsilon = \epsilon_m$ and $s = s_m$ that are not necessarily fixed as $m \to \infty$. All logarithms are taken base 2. Our main goal is to prove the following

Theorem 1. Let
$$m \to \infty$$
, $n = 2^m$, $\epsilon \in \left(\frac{m}{\sqrt{n}}, 1\right)$ and let
 $1 < s \le n\epsilon^2/80.$ (1)

Then for any received vector $\mathbf{g} \in \{0, 1\}^n$, list decoding of the first-order code $\mathrm{RM}(1, m)$ can reconstruct all codewords located within distance $\frac{n}{2}(1-\epsilon)$ from \mathbf{g} with probability no less than $1-2^{-s}$ and poly-logarithmic complexity

$$\mathcal{O}\left(\left(s + \log\frac{m}{\epsilon^2}\right)\frac{m}{\epsilon^2}\log^2\epsilon\right).$$
 (2)

In particular, for highly-noisy case of $\epsilon = m/\sqrt{n}$, the proposed algorithm removes the complexity gap between maximum likelihood decoding of the Green machine [1] and the randomized decoding of the GL algorithms of [2]-[5].

Note that it is indicated in [3] that the complexity order in ϵ can be reduced by using FFT of linear functions. We use a similar approach in our proof of Theorem 1 and derive the explicit restrictions for the varying parameters s and ϵ that will help us to reduce the complexity order from ϵ^{-4} to ϵ^{-2} . We also conjecture that the complexity order m/ϵ^2 of Theorem 1 is minimal in both parameters m and ϵ since any algorithm needs at least m + 1 operations to output the information bits of any single codeword of RM(1,m) and, on the other hand, the output list can include [6] ϵ^{-2} different codewords for infinitely many m, \mathbf{g} , and ϵ .

2 Two versions of the GL algorithm

Below, we describe two simplified versions $GL^{(1)}$ and $GL^{(2)}$ of the original Goldreich-Levin algorithm [2]. The variations of the first algorithm $GL^{(1)}$ are

presented in [3] and [4] (where it is termed A' along with the two other versions, A and A''), and $GL^{(2)}$ is outlined in [5]. We will use both algorithms $GL^{(1)}$ and $GL^{(2)}$ in this section to proceed with further improvements in Section 3. We also modify most estimates of [4] and [5] to address the general setting with varying parameters ϵ and s. In particular, it will be helpful for us to consider an arbitrary level 2^{-s} of the error probability instead of the fixed level 3/4 set in the algorithm $GL^{(2)}$.

Consider an *m*-dimensional Boolean cube \mathbb{F}_2^m that includes $n = 2^m$ points $x = (x_1, ..., x_m)$. Given any binary string $a = (a_1, ..., a_m)$, define a linear Boolean function a(x) as the dot product

$$a(x) = ax = \sum_{j=1}^{m} a_j x_j$$

Following [4] and [5], in this section we consider binary Hadamard codes $\mathcal{H}(m)$ [1] of length $n = 2^m$ and size n instead of codes $\mathrm{RM}(1, m)$. Each linear function a(x) is represented in $\mathcal{H}(m)$ by the vector \mathbf{a} with symbols a(x) obtained as x runs through \mathbb{F}_2^m . For any subset $X \subseteq \mathbb{F}_2^m$, let $\mathbf{a}(X)$ be the subvector of \mathbf{a} defined on positions $x \in X$.

Let parameters m, ϵ, s and the received word $\mathbf{g} \in \mathbb{F}_2^n$ be given. Our goal is to reconstruct the list of functions

$$L_{\epsilon}(\mathbf{g}) = \{a(x) : d(\mathbf{g}, \mathbf{a}) \le \frac{n}{2}(1-\epsilon)\}.$$

Here each function a(x) will be retrieved as the set of its coefficients $(a_1, ..., a_m)$. The algorithm $GL^{(1)}(\mathbf{g}, m, \epsilon, s)$ performs as follows. Let vector $\mathbf{j} = (0...010...0) \in \mathbb{F}_2^m$ have symbol 1 in position j $(j \in \{1, ..., m\})$ and 0s elsewhere. Let

$$l = \left\lceil \log \frac{ms}{\epsilon^2} \right\rceil. \tag{3}$$

We also assume that l < m, in which case it suffices to take $s < n\epsilon^2/m$ and $\epsilon > \sqrt{m/n}$. Now we independently and uniformly pick up l vectors $X = \{x_{(1)}, ..., x_{(l)}\}$ from \mathbb{F}_2^m and consider the linear subspace

$$\mathbb{X} = \left\{ \sum_{i=1}^{l} h_i x_{(i)} \, | \, h_i = 0, 1 \right\}.$$
(4)

If Rank(X) < l or X contains some unit vector **j**, we pick a new subset X. It is easy to verify that l random vectors $x_{(1)}, ..., x_{(l)}$ in \mathbb{F}_2^m are linearly dependent with probability

$$P_X \stackrel{\triangle}{=} \Pr \left\{ \operatorname{Rank}(\mathbb{X}) < l \right\} \le 2^{l-m}.$$
(5)

Performing $i = \lceil \log_2 s \rceil$ trials of choosing X, we obtain an insignificant probability of failure $P_X^i \leq s^{l-m} \leq s^{-1}$, since l < m. Each trial takes about ml^2 operations to verify condition $\operatorname{Rank}(X) = l$.

Given a string $b = (b_1, ..., b_l) \in \mathbb{F}_2^l$, we will seek any function

$$a_b(x) \in L_{\epsilon}(\mathbf{g}) : \boldsymbol{a}_b(X) = b.$$
(6)

The $GL^{(1)}$ algorithm inspects all 2^l strings $b \in \mathbb{F}_2^l$ to find all such functions $a_b(x)$. Note that any linear function $a_b(x)$ defined on a basis X is also known at every point x of its span \mathbb{X} :

if
$$x = \sum_{i=1}^{l} h_i x_{(i)}$$
 then $a_b(x) = \sum_{i=1}^{l} h_i b_i$. (7)

Our goal is to find the coefficients $a_{j,b}$ of $a_b(x)$, which in fact are the values of the function $a_b(x)$ at the points **j**:

$$a_{j,b} = a_b(\mathbf{j}), \quad j = 1, ..., m$$

Note that each coefficient $a_b(\mathbf{j})$ satisfies 2^l different equalities

$$a_b(\mathbf{j}) = a_b(x) + a_b(x + \mathbf{j}), \quad x \in \mathbb{X}, \quad j = 1, ..., m.$$
 (8)

Here the unknown outputs $a_b(x + \mathbf{j})$ will be approximated, i.e., replaced by the channel outputs $\mathbf{g}(x+\mathbf{j})$. The algorithm $GL^{(1)}$ then estimates each $a_b(\mathbf{j})$ taking the 2^l -majority vote

$$\tilde{a}_b(\mathbf{j}) = \mathsf{Maj}_{x \in \mathbb{X}} \left\{ a_b(x) + \mathbf{g}(x + \mathbf{j}) \right\}, \quad j = 1, ..., m.$$
(9)

By running all $b \in \mathbb{F}_2^l$, the GL^1 algorithm outputs the entire list of functions

$$\{\tilde{a}_b(x) = \sum_{j=1}^m \tilde{a}_b(\mathbf{j}) x_j \mid b \in \mathbb{F}_2^l\}.$$
(10)

The proof of the following result can be derived mostly following [4] and standard usage of the Chebyshev inequality.

Theorem 2. Let $m \to \infty$, $n = 2^m$, $\epsilon \in (\sqrt{\frac{m}{n}}, 1)$, and $s \in (1, n\epsilon^2/m)$. For any received vector $\mathbf{g} \in \{0, 1\}^n$ the algorithm $GL^{(1)}(\mathbf{g}, m, \epsilon, s)$ retrieves any linear function $\mathbf{a}(x)$ located within distance $\frac{n}{2}(1-\epsilon)$ from \mathbf{g} with probability no less than $1 - s^{-1}$ and complexity $\mathcal{O}(m^3s^2\epsilon^{-4})$.

Note that Theorem 2 upper-bounds the failure probability 1/s for a specific function $a_b(x)$ but not the entire list $L_{\epsilon}(\mathbf{g})$, which according to the Johnson bound, has size

$$|L_{\epsilon}(\mathbf{g})| \leq \epsilon^{-2}$$

We now turn to another algorithm, see [5], $GL^{(2)}(\mathbf{g}, m, \epsilon, s)$, that outputs the entire list $L_{\epsilon}(\mathbf{g})$ with high probability. It also improves the complexity of $GL^{(1)}$. We will also impose some restrictions on parameters m, ϵ, s to obtain exponentially declining error probability 2^{-s} . We take $\epsilon \geq m/n^{1/2}$ and use parameters

$$\lambda = \log \epsilon^{-2} + 4, \quad l = \lceil \lambda \rceil, \quad k = 2\left(s + \log \frac{m}{\epsilon^2}\right). \tag{11}$$

Again, note that l < m for large m. To obtain an l-dimensional subspace \mathbb{X} , we use s independent trials to pick up its basis X. This adds insignificant complexity ml^2s and has low error probability $P_X^s \leq 2^{(l-m)s}$.

Next, we substantially increase the number of estimates used in $GL^{(1)}$ to obtain $\tilde{a}_b(\mathbf{j})$. Note that X has 2^{m-l} cosets in \mathbb{F}_2^m . We then perform 9k or fewer trials picking up randomly and uniformly random points from \mathbb{F}_2^m (to shorten notation, we use k instead of $\lceil k \rceil$). Later, we will show that with high probability, we can choose k points $y_{(i)}$ among 9k points that fall into different cosets of X. Given the sets X and $Y = \{y_{(i)}, i = 1, ..., k\}$, the algorithm proceeds as follows.

We first replace the unit vector **j** in equalities (8) and (9) with any point $y_{(i)}$. For any b, a function $a_b(x)$ can be estimated at any point $y = y_{(i)}$ as

$$\tilde{a}_b(y_{(i)}) = \mathsf{Maj}_{x \in \mathbb{X}} \left\{ a_b(x) + \mathbf{g}(x + y_{(i)}) \right\}.$$
(12)

Similarly, given b and j, we evaluate the same function $a_b(x)$ at the point $y = y_{(i)} + \mathbf{j}$,

$$\tilde{a}_b(y_{(i)} + \mathbf{j}) = \mathsf{Maj}_{x \in \mathbb{X}} \left\{ a_b(x) + \mathbf{g}(x + y_{(i)} + \mathbf{j}) \right\}$$
(13)

Given b and j, we can now estimate the coefficient $a_b(\mathbf{j})$ as a function of the point $y = y_{(i)}$ as follows

$$\tilde{a}_{b,i}(\mathbf{j}) = \tilde{a}_b(y_{(i)}) + \tilde{a}_b(y_{(i)} + \mathbf{j})$$
(14)

Now we can combine k estimates $\tilde{a}_{b,i}(\mathbf{j})$ obtained for different i in one majority vote

$$\tilde{a}_b(\mathbf{j}) = \mathsf{Maj}_{i=1,\dots,k} \ \tilde{a}_{b,i}(\mathbf{j}) \tag{15}$$

The following theorem can be derived from [5].

Theorem 3. Let $m \to \infty$, $n = 2^m$, $\epsilon \in \left(\frac{m}{\sqrt{n}}, 1\right)$, and let positive number s satisfy (1). Then for any received vector $\mathbf{g} \in \{0,1\}^n$, the algorithm $GL^{(2)}(\mathbf{g}, m, \epsilon, s)$ reconstructs the entire list $L_{\epsilon}(\mathbf{g})$ of linear functions located within distance $\frac{n}{2}(1-\epsilon)$ from \mathbf{g} with probability no less than $1-2^{-s}$ and complexity

$$\mathcal{O}\left(m\epsilon^{-4}s + m\epsilon^{-4}\log\frac{m}{\epsilon^2}\right).$$

3 A modified GL algorithm

The GL algorithm has substantially advanced the entire theory of hard-core predicates. However, its complexity grows as ϵ^{-4} , which makes it less efficient from the coding perspective. In particular, recall that its complexity has quadratic order n^2s if decoder operates near channel capacity. Thus, it substantially exceeds the complexity $\mathcal{O}(n \ln^2 n)$ of the Green machine, which performs the same task error-free. In what follows, we reduce complexity to the order of $m\epsilon^{-2}$ in parameters m and ϵ . In some sense, our improvement based on the following obvious remark

Lemma 1. Linear functions $\{a(x)\}$ defined on \mathbb{F}_2^m form a Hadamard code $\mathcal{H}(l)$ on any *l*-dimensional linear subspace $\mathbb{X} \subset \mathbb{F}_2^m$.

Next, consider the majority voting performed on the vector $\mathbf{g}(\mathbb{X} + y_{(i)})$ in (12). Given any $y = y_{(i)}$, we choose in favor of some constant $\tilde{a}_b(y)$ in (12) instead of $\tilde{a}_b(y) + 1$ if the corresponding affine function $a_b(x) + \tilde{a}_b(y)$ is closer to $\mathbf{g}(\mathbb{X} + y)$ than the opposite function $a_b(x) + \tilde{a}_b(y) + 1$. Thus, the estimates $\tilde{a}_b(y)$ can be derived simultaneously for different $b \in \mathbb{F}_2^l$, by decoding vector $\mathbf{g}(\mathbb{X} + y)$ into the list of $L = 2^l$ closest affine functions

$$\{b(h) + \tilde{a}_b(y), b \in \mathbb{F}_2^l\}$$

Here exactly one function appears for each b. In other words, $\mathbf{g}(\mathbb{X} + y)$ is Llist decoded into the biorthogonal code $\mathrm{RM}(1, l)$ of size 2L. Thus, we obtain L strings of coefficients $(b_1, ..., b_l, \tilde{a}_b(y))$, which in turn can be rewritten as a vector $\tilde{A}(y)$ that has a symbol $\tilde{a}_b(y)$ in each "position" $b = (b_1, ..., b_l)$ of \mathbb{F}_2^l .

More generally, for each i = 1, ..., k and j = 0, ..., m, we perform listdecoding F_L of a vector $\mathbf{g}(\mathbb{X} + y_{(i)} + \mathbf{j})$ into L closest affine functions and form a vector $\tilde{A}(y_{(i)} + \mathbf{j})$ of length L that is formed by the free terms of these affine functions. This operation is equivalent to (13). In turn, for each $j \ge 1$, two vectors $\tilde{A}(y_{(i)})$ and $\tilde{A}(y_{(i)} + \mathbf{j})$ give a new vector

$$\hat{A}_{i}(\mathbf{j}) = \hat{A}(y_{(i)}) + \hat{A}(y_{(i)} + \mathbf{j})$$
 (16)

that includes all symbols $\tilde{a}_{b,i}(\mathbf{j})$ obtained earlier in (14). Finally, for each j = 1, ..., m, we perform majority voting on k vectors $\tilde{A}_i(\mathbf{j})$ which give m vectors

$$\tilde{A}(\mathbf{j}) = \mathsf{Maj}_{i=1,\dots,k} \tilde{A}_i(\mathbf{j}) \tag{17}$$

Thus, vectors $\tilde{A}(\mathbf{j})$ form an $m \times 2^l$ matrix, and give the coefficients $\tilde{a}_b = (\tilde{a}_{1,b}, ..., \tilde{a}_{m,b})$ of the function $\tilde{a}_b(x)$ in any column $b \in \mathbb{F}_2^l$. Algorithm $GL^{(2)}$ is now modified as follows.

> Algorithm $GL_{\text{mod}}^{(2)}(\mathbf{g}, m, \epsilon, s)$ for code $\mathcal{H}(m)$. Input: numbers m, ϵ, s , vector $\mathbf{g} \in \{0, 1\}^n$. Pick up an *l*-dimensional subspace \mathbb{X} in $\leq s$ trials. Pick up points $y_{(i)}, i = 1, ..., k$ in $\leq 9k$ trials. 1. For each *i* and j = 0, ..., m, decode vector $\mathbf{g}(\mathbb{X} + y_{(i)} + \mathbf{j})$ into a vector $\tilde{A}(y_{(i)} + \mathbf{j})$. 2. Find vector $\tilde{A}_i(\mathbf{j}) = \tilde{A}(y_{(i)}) + \tilde{A}(y_{(i)} + \mathbf{j})$. For each $j \geq 1$, find $\tilde{A}(\mathbf{j}) = \text{Maj}_{i=1,...,k} \tilde{A}_i(\mathbf{j})$. 3. Output the list $\{\tilde{a}_b(x)\}$ of (10).

Proof of Theorem 1. The two algorithms $GL^{(2)}$ and $GL^{(2)}_{mod}$ have the same outputs in each decoding step, and therefore have the same probabilities of failure. Thus, we only need to find the complexity Φ_{mod} of the modified algorithm. Note that the list decoding F_L of each vector $\mathbf{g}(\mathbb{X} + y_{(i)} + \mathbf{j})$ can be performed using the FFT-algorithm of the Green machine. This algorithm (see [1] or [6] for more details) represents each affine function with coefficients $b_1, ..., b_l, \tilde{a}_b$ as a path in a tree of depth m + 1. In step j = 1, ..., m, the algorithm recursively derives the distance from the received vector to every codeword generated by a function $b_1, ..., b_j, 0, ..., 0$. In the end, it outputs the distance corresponding to the full function $b_1, ..., b_l, \tilde{a}_b$, or chooses the value of the free term $\tilde{a}_b = 0, 1$ that gives the shorter distance for any prefix $b_1, ..., b_l$. The algorithm requires the order of $l^2 2^l$ operations.

Thus, we need the order of mkl^22^l operations for decoding all mk vectors $\mathbf{g}(\mathbb{X} + y_{(i)} + \mathbf{j})$. Finally, we calculate each vector $\tilde{A}_i(\mathbf{j})$, which requires 2^l operations per vector. Therefore, the algorithm $GL_{\text{mod}}^{(2)}$ has the overall complexity

$$\Phi_{\text{mod}} \sim mkl^2 2^l = \mathcal{O}\left(\left(s + \log \frac{m}{\epsilon^2}\right) \frac{m}{\epsilon^2} \log^2 \epsilon\right).$$

This completes our proof for the Hadamard code $\mathcal{H}(m)$.

For the code RM(1,m), we can perform $GL_{\text{mod}}^{(2)}$ for the received vector \mathbf{g} and the shifted vector $\mathbf{g} + \mathbf{1}$, and then combine both lists. Thus, the former complexity Φ_{mod} is at most doubled, whereas the bound 2^{-s} is not changed. Indeed, the same Johnson bound $|L_{\epsilon}(\mathbf{g})| \leq \epsilon^{-2}$ holds for both codes $\mathcal{H}(m)$ and RM(1,m), and can be used for the latter in the same way it was for the former. \Box

APPENDIX. One open problem is to refine the estimates used for pairwise independent random variables in Theorems 1 to 3. In turn, this could relax restriction (1), inherent in Theorems 1 and 3. Namely, we raise the following

Open Problem. Let $E \subset \mathbb{F}_2^m$ be an arbitrary subset of size $|E| = 2^{m-1}(1-\epsilon)$ but without the null vector **0**, and $\mathbb{X} \subset \mathbb{F}_2^m$ be any *l*-dimensional space, l < m/2. We say that \mathbb{X} is in error and write \mathbb{X}_{err} if $|E \cap \mathbb{X}| \geq \frac{1}{2} |\mathbb{X}|$. Maximize the fraction

$$f(m, \epsilon, l) = \max_{E} \frac{\text{number of } \mathbb{X}_{\text{err}}}{\text{number of } \mathbb{X}}$$

over subsets E. Is $f(m, \epsilon, l) < 2^{-l}$ for any $\epsilon \in (0, 1)$?

References

- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.
- [2] O. Goldreich and L. A. Levin, "A hard-core predicate for all one-way functions", 21st ACM Symp. Theory of Computing, Seattle, WA, USA, May 14 17, 1989, pp. 25–32.
- [3] L. A. Levin, "Randomness and Nondeterminism," J. Symb. Logic, vol. 58, pp. 1102-1103, 1993.
- [4] O. Goldreich, Foundations of Cryptography, vol. 1, Cambridge, New York, 2001.
- [5] L. Trevisan, "Some applications of coding theory in computational complexity", Quaderni di matematica, vol. 13, pp. 347-424, 2004.
- [6] I. Dumer, G. Kabatiansky, C. Tavernier, "List decoding of Reed-Muller codes of the first order," *Problems Info. Transmission*, vol. 43, no. 3 pp. 46-54, 2007.