
Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory
June 15-21, 2012, Pomorie, Bulgaria pp. 7–14

The Goldreich-Levin algorithm with reduced
complexity 1

Ameriah Salem Abdouli ameirah.abdouli@kustar.ac.ae
Khalifa University of Science, Technology and Research(KUSTAR)& NKC,UAE
Ilya Dumer dumer@ee.ucr.edu
University of California at Riverside, USA
Grigory Kabatiansky kaba@iitp.ru
KUSTAR, UAE, on leave from ITTP RAS, Moscow
Cedric Tavernier tavernier.cedric@gmail.com
NKC,UAE

Abstract. The celebrated Goldreich-Levin algorithm performs randomized list de-
coding of the Reed-Muller codes RM(1, m) of length n = 2m within the decoding
radius n

2
(1− ε) for any ε > 0, and achieves a low decoding error probability of 2−s

with a polylogarithmic complexity sm/ε4. The deterministic, error-free, Green al-
gorithm performs complete maximum likelihood decoding with complexity n ln2 n.
We combine the two algorithms and reduce the complexity of the Goldreich-Levin
algorithm to the order of sm/ε2. Here the output can include the information blocks
of ε−2 reconstructed codewords, which require m/ε2 bits, and the order of sm/ε2

gives the lowest complexity known for any given ε. Another particular case is near-
capacity decoding, wherein we take parameter ε of a vanishing rate m/

√
n. Then the

proposed algorithm has complexity order of n ln2 n, instead of the quadratic order
n2 of the Goldreich-Levin algorithm.

1 Introduction

Decoding of the first-order Reed-Muller codes RM(,m) has been addressed
in many papers since 1960s. In particular, the maximum likelihood algorithm
designed by Green [1] for codes RM(,m) uses Fast Fourier Transform (FFT)
and sorts out all codewords with respect to their distances from the received
vector. The algorithm requires the order of n ln2 n bit operations, where n = 2m

is the code length. For any ε ∈ (0, 1), the deterministic algorithm of [6] performs
error-free list decoding of any received vector g within the decoding radius of
n
2 (1− ε) and requires a linear complexity order of n ln2 ε.

In the area of randomized algorithms, a major breakthrough was achieved
by Goldreich and Levin [2], with later refinements of [3]- [5]. For any received

1The work of I. Dumer was supported by NSF grant 1102074 and ARO grant W911NF-
11-1-0027. The work of G.Kabatiansky was supported by RFBR grants 11-01-00735 and
12-01-00905.

8 ACCT2012

vector g, any fixed positive number s > 1 and fixed number ε ∈ (0, 1), the lat-
est version [5] of the Goldreich-Levin (GL) algorithm has low poly-logarithmic
complexity (sm ln m) /ε4 as m →∞, and with high probability 1−2−s retrieves
all codewords of RM(,m) within the decoding radius n

2 (1− ε).
For fixed parameters ε and s, the GL algorithm drastically reduces the

asymptotic complexity of the error-free algorithms [1] and [6]. On the other
hand, note that near channel capacity, we can consider the decoding radius
n
2 (1− ε) of the code RM(1,m) with vanishing parameter ε = m/

√
n as n →∞.

In this case, the GL algorithm has unacceptably high complexity of quadratic
order n2s. Therefore, our main goal is to reduce complexity of the GL algorithm
in parameter ε. Below we consider general parameters ε = εm and s = sm that
are not necessarily fixed as m →∞. All logarithms are taken base 2. Our main
goal is to prove the following

Theorem 1. Let m →∞, n = 2m, ε ∈
(

m√
n
, 1

)
and let

1 < s ≤ nε2/80. (1)

Then for any received vector g ∈{0, 1}n, list decoding of the first-order code
RM(1,m) can reconstruct all codewords located within distance n

2 (1− ε) from g
with probability no less than 1− 2−s and poly-logarithmic complexity

O
((

s + log
m

ε2

) m

ε2
log2 ε

)
. (2)

In particular, for highly-noisy case of ε = m/
√

n, the proposed algorithm
removes the complexity gap between maximum likelihood decoding of the Green
machine [1] and the randomized decoding of the GL algorithms of [2]- [5].

Note that it is indicated in [3] that the complexity order in ε can be reduced
by using FFT of linear functions. We use a similar approach in our proof of
Theorem 1 and derive the explicit restrictions for the varying paramaters s and
ε that will help us to reduce the complexity order from ε−4 to ε−2. We also
conjecture that the complexity order m/ε2 of Theorem 1 is minimal in both
parameters m and ε since any algorithm needs at least m + 1 operations to
output the information bits of any single codeword of RM(1,m) and, on the
other hand, the output list can include [6] ε−2 different codewords for infinitely
many m, g, and ε.

2 Two versions of the GL algorithm

Below, we describe two simplified versions GL(1) and GL(2) of the original
Goldreich-Levin algorithm [2]. The variations of the first algorithm GL(1) are

Abdouli, Dumer, Kabatyanskii, Tavernier 9

presented in [3] and [4] (where it is termed A′ along with the two other versions,
A and A′′), and GL(2) is outlined in [5]. We will use both algorithms GL(1) and
GL(2) in this section to proceed with further improvements in Section 3. We
also modify most estimates of [4] and [5] to address the general setting with
varying parameters ε and s. In particular, it will be helpful for us to consider
an arbitrary level 2−s of the error probability instead of the fixed level 3/4 set
in the algorithm GL(2).

Consider an m-dimensional Boolean cube Fm
2 that includes n = 2m points

x = (x1, ..., xm). Given any binary string a = (a1, . . . , am), define a linear
Boolean function a(x) as the dot product

a(x) = ax =
m∑

j=1

ajxj .

Following [4] and [5], in this section we consider binary Hadamard codes H(m)
[1] of length n = 2m and size n instead of codes RM(,m). Each linear function
a(x) is represented in H(m) by the vector a with symbols a(x) obtained as
x runs through Fm

2 . For any subset X ⊆ Fm
2 , let a(X) be the subvector of a

defined on positions x ∈ X.
Let parameters m, ε, s and the received word g ∈ Fn

2 be given. Our goal is
to reconstruct the list of functions

Lε(g) = {a(x) : d(g, a) ≤ n

2
(1− ε)}.

Here each function a(x) will be retrieved as the set of its coefficients (a1, .., am).
The algorithm GL(1)(g,m,ε, s) performs as follows. Let vector j = (0...010...0) ∈
Fm

2 have symbol 1 in position j (j ∈ {1, ...,m}) and 0s elsewhere. Let

l =
⌈
log

ms

ε2

⌉
. (3)

We also assume that l < m, in which case it suffices to take s < nε2/m

and ε >
√

m/n. Now we independently and uniformly pick up l vectors X ={
x(1), ..., x(l)

}
from Fm

2 and consider the linear subspace

X =

{
l∑

i=1

hix(i) |hi = 0, 1

}
. (4)

If Rank(X) < l or X contains some unit vector j, we pick a new subset X. It is
easy to verify that l random vectors x(1), ..., x(l) in Fm

2 are linearly dependent
with probability

PX
4
= Pr {Rank(X) < l} ≤ 2l−m. (5)

10 ACCT2012

Performing i = dlog2 se trials of choosing X, we obtain an insignificant prob-
ability of failure P i

X ≤ sl−m ≤ s−1, since l < m. Each trial takes about ml2

operations to verify condition Rank(X) = l.
Given a string b = (b1, ..., bl) ∈ Fl

2, we will seek any function

ab(x) ∈ Lε(g) : ab(X) = b. (6)

The GL(1) algorithm inspects all 2l strings b ∈ Fl
2 to find all such functions

ab(x). Note that any linear function ab(x) defined on a basis X is also known
at every point x of its span X :

if x =
l∑

i=1

hix(i) then ab(x) =
l∑

i=1

hibi. (7)

Our goal is to find the coefficients aj,b of ab(x), which in fact are the values of
the function ab(x) at the points j :

aj,b = ab(j), j = 1, ..., m

Note that each coefficient ab(j) satisfies 2l different equalities

ab(j) = ab(x) + ab(x + j), x ∈ X, j = 1, ...,m. (8)

Here the unknown outputs ab(x + j) will be approximated, i.e., replaced by the
channel outputs g(x+j). The algorithm GL(1) then estimates each ab(j) taking
the 2l-majority vote

ãb(j) = Majx∈X {ab(x) + g(x + j)} , j = 1, ..., m. (9)

By running all b ∈ Fl
2, the GL1 algorithm outputs the entire list of functions

{ãb(x) =
m∑

j=1

ãb(j)xj | b ∈ Fl
2}. (10)

The proof of the following result can be derived mostly following [4] and stan-
dard usage of the Chebyshev inequality.

Theorem 2. Let m →∞, n = 2m, ε ∈ (√
m
n , 1

)
, and s ∈ (1, nε2/m). For any

received vector g ∈ {0, 1}n the algorithm GL(1)(g,m, ε, s) retrieves any linear
function a(x) located within distance n

2 (1 − ε) from g with probability no less
than 1− s−1 and complexity O(m3s2ε−4).

Abdouli, Dumer, Kabatyanskii, Tavernier 11

Note that Theorem 2 upper-bounds the failure probability 1/s for a specific
function ab(x) but not the entire list Lε(g), which according to the Johnson
bound, has size

|Lε(g)| ≤ ε−2.

We now turn to another algorithm, see [5], GL(2)(g,m, ε, s), that outputs the
entire list Lε(g) with high probability. It also improves the complexity of GL(1).
We will also impose some restrictions on parameters m, ε, s to obtain exponen-
tially declining error probability 2−s. We take ε ≥ m/n1/2 and use parameters

λ = log ε−2 + 4, l = dλe , k = 2
(
s + log

m

ε2

)
. (11)

Again, note that l < m for large m. To obtain an l-dimensional subspace X,
we use s independent trials to pick up its basis X. This adds insignificant
complexity ml2s and has low error probability P s

X ≤ 2(l−m)s.

Next, we substantially increase the number of estimates used in GL(1) to
obtain ãb(j). Note that X has 2m−lcosets in Fm

2 . We then perform 9k or fewer
trials picking up randomly and uniformly random points from Fm

2 (to shorten
notation, we use k instead of dke). Later, we will show that with high proba-
bility, we can choose k points y(i) among 9k points that fall into different cosets
of X. Given the sets X and Y = {y(i), i = 1, ..., k}, the algorithm proceeds as
follows.

We first replace the unit vector j in equalities (8) and (9) with any point
y(i). For any b, a function ab(x) can be estimated at any point y = y(i) as

ãb(y(i)) = Majx∈X
{
ab(x) + g(x + y(i))

}
. (12)

Similarly, given b and j, we evaluate the same function ab(x) at the point
y = y(i) + j,

ãb(y(i) + j) = Majx∈X
{
ab(x) + g(x + y(i) + j)

}
(13)

Given b and j, we can now estimate the coefficient ab(j) as a function of the
point y = y(i) as follows

ãb,i(j) = ãb(y(i)) + ãb(y(i) + j) (14)

Now we can combine k estimates ãb,i(j) obtained for different i in one majority
vote

ãb(j) = Maji=1,...,k ãb,i(j) (15)

The following theorem can be derived from [5].

12 ACCT2012

Theorem 3. Let m → ∞, n = 2m, ε ∈
(

m√
n
, 1

)
, and let positive num-

ber s satisfy (1). Then for any received vector g ∈ {0, 1}n, the algorithm
GL(2)(g,m, ε, s) reconstructs the entire list Lε(g) of linear functions located
within distance n

2 (1− ε) from g with probability no less than 1− 2−s and com-
plexity

O
(
mε−4s + mε−4 log

m

ε2

)
.

3 A modified GL algorithm

The GL algorithm has substantially advanced the entire theory of hard-core
predicates. However, its complexity grows as ε−4, which makes it less effi-
cient from the coding perspective. In particular, recall that its complexity
has quadratic order n2s if decoder operates near channel capacity. Thus, it
substantially exceeds the complexity O (

n ln2 n
)

of the Green machine, which
performs the same task error-free. In what follows, we reduce complexity to the
order of mε−2 in parameters m and ε. In some sense, our improvement based
on the following obvious remark

Lemma 1. Linear functions {a(x)} defined on Fm
2 form a Hadamard code H(l)

on any l-dimensional linear subspace X ⊂ Fm
2 .

Next, consider the majority voting performed on the vector g(X + y(i)) in
(12). Given any y = y(i), we choose in favor of some constant ãb(y) in (12)
instead of ãb(y) + 1 if the corresponding affine function ab(x) + ãb(y) is closer
to g(X + y) than the opposite function ab(x) + ãb(y) + 1. Thus, the estimates
ãb(y) can be derived simultaneously for different b ∈ Fl

2, by decoding vector
g(X+ y) into the list of L = 2l closest affine functions

{b(h) + ãb(y), b ∈ Fl
2}.

Here exactly one function appears for each b. In other words, g(X + y) is L-
list decoded into the biorthogonal code RM(1, l) of size 2L. Thus, we obtain
L strings of coefficients (b1, ..., bl, ãb(y)), which in turn can be rewritten as a
vector Ã(y) that has a symbol ãb(y) in each “position” b = (b1, ..., bl) of Fl

2.
More generally, for each i = 1, ..., k and j = 0, ...,m, we perform list-

decoding FL of a vector g(X+ y(i) + j) into L closest affine functions and form
a vector Ã(y(i) + j) of length L that is formed by the free terms of these affine
functions. This operation is equivalent to (13). In turn, for each j ≥ 1, two
vectors Ã(y(i)) and Ã(y(i) + j) give a new vector

Ãi(j) = Ã(y(i)) + Ã(y(i) + j) (16)

Abdouli, Dumer, Kabatyanskii, Tavernier 13

that includes all symbols ãb,i(j) obtained earlier in (14). Finally, for each j =
1, ..., m, we perform majority voting on k vectors Ãi(j) which give m vectors

Ã(j) = Maji=1,...,kÃi(j) (17)

Thus, vectors Ã(j) form an m × 2l matrix, and give the coefficients ãb =
(ã1,b, ..., ãm,b) of the function ãb(x) in any column b ∈ Fl

2 .
Algorithm GL(2) is now modified as follows.

Algorithm GL
(2)
mod(g,m, ε, s) for code H(m).

Input: numbers m, ε, s, vector g ∈ {0, 1}n.

Pick up an l-dimensional subspace X in ≤ s trials.

Pick up points y(i), i = 1, ..., k in ≤ 9k trials.

1. For each i and j = 0, ..., m, decode vector

g(X+ y(i) + j) into a vector Ã(y(i) + j).

2. Find vector Ãi(j) = Ã(y(i)) + Ã(y(i) + j).

For each j ≥ 1, find Ã(j) = Maji=1,...,k Ãi(j).

3. Output the list {ãb(x)} of (10).

Proof of Theorem 1. The two algorithms GL(2) and GL
(2)
mod have the same

outputs in each decoding step, and therefore have the same probabilities of fail-
ure. Thus, we only need to find the complexity Φmod of the modified algorithm.
Note that the list decoding FL of each vector g(X+ y(i) + j) can be performed
using the FFT-algorithm of the Green machine. This algorithm (see [1] or [6]
for more details) represents each affine function with coefficients b1, ..., bl, ãb as
a path in a tree of depth m + 1. In step j = 1, ..., m, the algorithm recursively
derives the distance from the received vector to every codeword generated by a
function b1, ..., bj , 0, ..., 0. In the end, it outputs the distance corresponding to
the full function b1, ..., bl, ãb, or chooses the value of the free term ãb = 0, 1 that
gives the shorter distance for any prefix b1, ..., bl. The algorithm requires the
order of l22l operations.

Thus, we need the order of mkl22l operations for decoding all mk vectors
g(X+ y(i) + j). Finally, we calculate each vector Ãi(j), which requires 2l oper-

ations per vector. Therefore, the algorithm GL
(2)
mod has the overall complexity

Φmod ∼ mkl22l = O
((

s + log
m

ε2

) m

ε2
log2 ε

)
.

14 ACCT2012

This completes our proof for the Hadamard code H(m).
For the code RM(1,m), we can perform GL

(2)
mod for the received vector g

and the shifted vector g + 1, and then combine both lists. Thus, the former
complexity Φmod is at most doubled, whereas the bound 2−s is not changed.
Indeed, the same Johnson bound |Lε(g)| ≤ ε−2 holds for both codes H(m) and
RM(1,m), and can be used for the latter in the same way it was for the former.
¤

Appendix. One open problem is to refine the estimates used for pairwise
independent random variables in Theorems 1 to 3. In turn, this could relax
restriction (1), inherent in Theorems 1 and 3. Namely, we raise the following

Open Problem. Let E ⊂ Fm
2 be an arbitrary subset of size |E| = 2m−1(1−ε)

but without the null vector 0, and X ⊂ Fm
2 be any l-dimensional space, l < m/2.

We say that X is in error and write Xerr if |E ∩ X| ≥ 1
2 |X| . Maximize the fraction

f(m, ε, l) = max
E

number of Xerr

number of X

over subsets E. Is f(m, ε, l) < 2−l for any ε ∈ (0, 1)?

References

[1] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes, North-Holland, Amsterdam, 1977.

[2] O. Goldreich and L. A. Levin, “A hard-core predicate for all one-way func-
tions”, 21 st ACM Symp. Theory of Computing, Seattle, WA, USA, May 14
- 17, 1989, pp. 25–32.

[3] L. A. Levin, “Randomness and Nondeterminism,” J. Symb. Logic, vol. 58,
pp. 1102-1103, 1993.

[4] O. Goldreich, Foundations of Cryptography, vol. 1, Cambridge, New York,
2001.

[5] L. Trevisan, “Some applications of coding theory in computational com-
plexity”, Quaderni di matematica, vol. 13, pp. 347-424, 2004.

[6] I. Dumer, G. Kabatiansky, C. Tavernier, “List decoding of Reed-Muller
codes of the first order, ” Problems Info. Transmission, vol. 43, no. 3 pp.
46-54, 2007.

