Thirteenth International Workshop on Algebraic and Combinatorial Coding Theory
June 15-21, 2012, Pomorie, Bulgaria pp. 7-14

The Goldreich-Levin algorithm with reduced
complexity !

AMERIAH SALEM ABDOULI ameirah.abdouli@kustar.ac.ae
Khalifa University of Science, Technology and Research(KUSTAR)& NKC,UAE
ILyA DUMER dumer@ee.ucr.edu
University of California at Riverside, USA

GRIGORY KABATIANSKY kaba@iitp.ru
KUSTAR, UAE, on leave from ITTP RAS, Moscow

CEDRIC TAVERNIER tavernier.cedric@gmail.com
NKC,UAE

Abstract. The celebrated Goldreich-Levin algorithm performs randomized list de-
coding of the Reed-Muller codes RM(1,m) of length n = 2™ within the decoding
radius 5 (1 — €) for any € > 0, and achieves a low decoding error probability of 27*
with a polylogarithmic complexity sm/e4. The deterministic, error-free, Green al-
gorithm performs complete maximum likelihood decoding with complexity nln? n.
We combine the two algorithms and reduce the complexity of the Goldreich-Levin
algorithm to the order of sm/eg. Here the output can include the information blocks
of €72 reconstructed codewords, which require m/e? bits, and the order of sm/e>
gives the lowest complexity known for any given e. Another particular case is near-
capacity decoding, wherein we take parameter € of a vanishing rate m/+/n. Then the
proposed algorithm has complexity order of nln?n, instead of the quadratic order
n? of the Goldreich-Levin algorithm.

1 Introduction

Decoding of the first-order Reed-Muller codes RM(1,m) has been addressed
in many papers since 1960s. In particular, the maximum likelihood algorithm
designed by Green [1] for codes RM(1,m) uses Fast Fourier Transform (FFT)
and sorts out all codewords with respect to their distances from the received
vector. The algorithm requires the order of n In? n bit operations, where n = 2™
is the code length. For any € € (0, 1), the deterministic algorithm of [6] performs
error-free list decoding of any received vector g within the decoding radius of
(1 — €) and requires a linear complexity order of nln*e.

In the area of randomized algorithms, a major breakthrough was achieved
by Goldreich and Levin [2], with later refinements of [3]- [5]. For any received

1The work of I. Dumer was supported by NSF grant 1102074 and ARO grant W911NF-
11-1-0027. The work of G.Kabatiansky was supported by RFBR grants 11-01-00735 and
12-01-00905.

8 ACCT2012

vector g, any fixed positive number s > 1 and fixed number € € (0, 1), the lat-
est version [5] of the Goldreich-Levin (GL) algorithm has low poly-logarithmic
complexity (smInm) /e* as m — oo, and with high probability 1—27* retrieves
all codewords of RM(1,m) within the decoding radius 5 (1 — €).

For fixed parameters ¢ and s, the GL algorithm drastically reduces the
asymptotic complexity of the error-free algorithms [1] and [6]. On the other
hand, note that near channel capacity, we can consider the decoding radius
%(1 —¢) of the code RM(1,m) with vanishing parameter € = m/y/n as n — oo.
In this case, the GL algorithm has unacceptably high complexity of quadratic
order n%s. Therefore, our main goal is to reduce complexity of the GL algorithm
in parameter €. Below we consider general parameters € = ¢, and s = s, that
are not necessarily fixed as m — oo. All logarithms are taken base 2. Our main
goal is to prove the following

Theorem 1. Let m — oo, n = 2™, ¢ € (%, 1) and let
n

1 < s < ne?/80. (1)

Then for any received vector g €{0,1}", list decoding of the first-order code
RM(1,m) can reconstruct all codewords located within distance §(1 —¢€) from g
with probability no less than 1 — 27% and poly-logarithmic complexity

0 ((s + log g) g log? e) . (2)

In particular, for highly-noisy case of € = m/+/n, the proposed algorithm
removes the complexity gap between maximum likelihood decoding of the Green
machine [1] and the randomized decoding of the GL algorithms of [2]- [5].

Note that it is indicated in [3] that the complexity order in € can be reduced
by using FFT of linear functions. We use a similar approach in our proof of
Theorem 1 and derive the explicit restrictions for the varying paramaters s and
e that will help us to reduce the complexity order from e~% to e 2. We also
conjecture that the complexity order m/e?> of Theorem 1 is minimal in both
parameters m and € since any algorithm needs at least m + 1 operations to
output the information bits of any single codeword of RM(1,m) and, on the
other hand, the output list can include [6] =2 different codewords for infinitely
many m, g, and e.

2 Two versions of the GL algorithm

Below, we describe two simplified versions GLW) and GL®) of the original
Coldreich-Levin algorithm [2]. The variations of the first algorithm GL®) are

Abdouli, Dumer, Kabatyanskii, Tavernier 9

presented in [3] and [4] (where it is termed A’ along with the two other versions,
A and A”), and GL® is outlined in [5]. We will use both algorithms GL(") and
GL® in this section to proceed with further improvements in Section 3. We
also modify most estimates of [4] and [5] to address the general setting with
varying parameters € and s. In particular, it will be helpful for us to consider
an arbitrary level 2% of the error probability instead of the fixed level 3/4 set
in the algorithm GL®.

Consider an m-dimensional Boolean cube F5" that includes n = 2" points
x = (z1,...,Tm). Given any binary string a = (ai,...,an), define a linear
Boolean function a(x) as the dot product

m
a(r) = ax = Z a;x;.
j=1

Following [4] and [5], in this section we consider binary Hadamard codes H(m)
[1] of length n = 2™ and size n instead of codes RM(1, m). Each linear function
a(x) is represented in H(m) by the vector a with symbols a(z) obtained as
x runs through F5'. For any subset X C F3', let a(X) be the subvector of a
defined on positions z € X.

Let parameters m, €, s and the received word g € [be given. Our goal is
to reconstruct the list of functions

Le(g) = {a(2) : d(g,a) < (1 -).

Here each function a(z) will be retrieved as the set of its coefficients (a1, .., am).
The algorithm GL(M (g,m,e, s) performs as follows. Let vector j = (0...010...0) €
F2* have symbol 1 in position j (j € {1,...,m}) and Os elsewhere. Let

l= [log %W . 3)

We also assume that | < m, in which case it suffices to take s < ne?/m
and € > y/m/n. Now we independently and uniformly pick up [vectors X =
{x(l), ey :c(l)} from F5' and consider the linear subspace

l
X:{Zhim(iﬂhizo,l}. (4)
i=1

If Rank(X) < [or X contains some unit vector j, we pick a new subset X. It is
easy to verify that [random vectors z(jy), ..., z() in F5" are linearly dependent
with probability

Px 2 Pr{Rank(X) < I} < 2™ (5)

10 ACCT2012

Performing i = [log, s] trials of choosing X, we obtain an insignificant prob-
ability of failure Py < si=m < 71 since | < m. Each trial takes about ml?
operations to verify condition Rank(X) = [.

Given a string b = (by, ..., b;) € Fy, we will seek any function
ap(z) € Le(g) : ap(X) = D. (6)

The GL(l) algorithm inspects all 2 strings b € F} to find all such functions
ap(x). Note that any linear function ay(x) defined on a basis X is also known
at every point x of its span X :

l

l
if T = Z hzx(l) then ab(x) = Z hzbz (7)
i=1

i=1

Our goal is to find the coefficients a;; of ap(x), which in fact are the values of
the function ap(x) at the points j :

aj,b:ab(j)7 J=1..,m
Note that each coefficient ay(j) satisfies 2! different equalities
ab(-i) :G/b(.f)—i-ab(x—i-j), z €X7 .7 = 17"'7m~ (8)

Here the unknown outputs a,(x + j) will be approximated, i.e., replaced by the
channel outputs g(z+j). The algorithm GL(1) then estimates each a;(j) taking
the 2!-majority vote

ap(j) = Majyex {an(z) + gz +Jj)}, j=1,...,m. (9)

By running all b € F}, the GL! algorithm outputs the entire list of functions

{ab i b x]]bEF} (10)

J=1

The proof of the following result can be derived mostly following [4] and stan-
dard usage of the Chebyshev inequality.

m
n’

received vector g € {0,1}" the algorithm G L
n

function a() located within distance 5(1 -

than 1 — s~ and complexity O(m3s%e=?).

Theorem 2. Let m — oo, n =2, € € (, and s € (1,n€?/m). For any

(,m,€,8) retrieves any linear
from g with probability no less

(1)
€)

Abdouli, Dumer, Kabatyanskii, Tavernier 11

Note that Theorem 2 upper-bounds the failure probability 1/s for a specific
function ap(z) but not the entire list L¢(g), which according to the Johnson
bound, has size

|Le(g)| < e

We now turn to another algorithm, see [5], GL®) (g, m, ¢, s), that outputs the
entire list L (g) with high probability. It also improves the complexity of GL™M).
We will also impose some restrictions on parameters m, e, s to obtain exponen-
tially declining error probability 27°. We take € > m/ n'/2 and use parameters

_ —2 _ _ m
A=loge2+4, [=[)\], k—2<5—|—10g62). (11)

Again, note that | < m for large m. To obtain an [-dimensional subspace X,
we use s independent trials to pick up its basis X. This adds insignificant
complexity ml?s and has low error probability Py < o(l=m)s

Next, we substantially increase the number of estimates used in GL(®) to
obtain d(j). Note that X has 2™ !cosets in FJ'. We then perform 9k or fewer
trials picking up randomly and uniformly random points from F3" (to shorten
notation, we use k instead of [k]). Later, we will show that with high proba-
bility, we can choose k points y(;) among 9k points that fall into different cosets
of X. Given the sets X and Y = {y(;), i = 1,...,k}, the algorithm proceeds as
follows.

We first replace the unit vector j in equalities (8) and (9) with any point
Y(i)- For any b, a function ap(x) can be estimated at any point y = Yy as

ap(y(i)) = Majyex {an(x) + gz + @)} - (12)

Similarly, given b and j, we evaluate the same function a,(x) at the point
Y =Ya) t+IJ

ap(y(i) +3) = Majzex {av(2) + gz +yu) +3)} (13)

Given b and j, we can now estimate the coefficient a;(j) as a function of the
point y = y; as follows

ap,i(§) = an(y)) + an(yay +3) (14)

Now we can combine k estimates @ ;(j) obtained for different ¢ in one majority
vote

ap(j) = Maj;—y__x abi(j) (15)

The following theorem can be derived from [5].

12 ACCT2012

Theorem 3. Let m — oo, n = 2™, € € (%,), and let positive num-
ber s satisfy (1). Then for any received vector g € {0,1}™, the algorithm
GL® (g, m,e,s) reconstructs the entire list L.(g) of linear functions located
within distance 5 (1 — €) from g with probability no less than 1 —27° and com-
plexity

O <me_4s + me *log %) .
€

3 A modified GL algorithm

The GL algorithm has substantially advanced the entire theory of hard-core
predicates. However, its complexity grows as e 4, which makes it less effi-
cient from the coding perspective. In particular, recall that its complexity
has quadratic order n?s if decoder operates near channel capacity. Thus, it
substantially exceeds the complexity O (n In? n) of the Green machine, which
performs the same task error-free. In what follows, we reduce complexity to the
order of me~2 in parameters m and e. In some sense, our improvement based
on the following obvious remark

Lemma 1. Linear functions {a(x)} defined on F5* form a Hadamard code H(1)
on any l-dimensional linear subspace X C F3*.

Next, consider the majority voting performed on the vector g(X + y;)) in
(12). Given any y = y(;), we choose in favor of some constant a,(y) in (12)
instead of ap(y) + 1 if the corresponding affine function ay(z) + ap(y) is closer
to g(X 4 y) than the opposite function ap(x) + ap(y) + 1. Thus, the estimates
ay(y) can be derived simultaneously for different b € F,, by decoding vector
g(X + y) into the list of L = 2 closest affine functions

{b(h) +ap(y), b e Fo}.

Here exactly one function appears for each b. In other words, g(X + y) is L-
list decoded into the biorthogonal code RM(1,1) of size 2L. Thus, we obtain
L strings of coefficients (b1, ..., b;,ap(y)), which in turn can be rewritten as a

vector A(y) that has a symbol @(y) in each “position” b = (b1, ..., b;) of Fl.

More generally, for each ¢ = 1,...,k and j = 0,...,m, we perform list-
decoding F, of a vector g(X + Y@y + j) into L closest affine functions and form
a vector /Nl(y(i) +j) of length L that is formed by the free terms of these affine
functions. This operation is equivalent to (13). In turn, for each j > 1, two
vectors /Nl(y(i)) and fl(y(i) +j) give a new vector

Ai(§) = A(?/(z‘)) + Ay +3J) (16)

Abdouli, Dumer, Kabatyanskii, Tavernier 13

that includes all symbols a;;(j) obtained earlier in (14). Finally, for each j =
1,...,m, we perform majority voting on k vectors A4;(j) which give m vectors

A(j) = Maji:l,...,kAi(j) (17)

Thus, vectors 121(.]) form an m x 2! matrix, and give the coefficients a, =
(@1 by -, @mp) Of the function @,(z) in any column b € F} .
Algorithm GL® is now modified as follows.

Algorithm GLI(E())d(g,m, €,s) for code H(m).
Input: numbers m, €, s, vector g € {0,1}".
Pick up an /-dimensional subspace X in < s trials.
Pick up points y;y, @ =1,...,k in < 9k trials.
1. For each ¢ and j =0, ..., m, decode vector
g(X +yq) +]J) into a vector fl(y(i) +J).
2. Find vector 4;(j) = /Nl(y(i)) + fi(y(i) +3J).
For each j > 1, find A(j) = Maj,—1 & Ai(§).
3. Output the list {as(x)} of (10).

Proof of Theorem 1. The two algorithms GL®? and GLEEZ 4 have the same
outputs in each decoding step, and therefore have the same probabilities of fail-
ure. Thus, we only need to find the complexity ®,,0q of the modified algorithm.
Note that the list decoding F, of each vector g(X + y;) +j) can be performed
using the FFT-algorithm of the Green machine. This algorithm (see [1] or [6]
for more details) represents each affine function with coefficients b1, ..., by, a; as
a path in a tree of depth m + 1. In step j = 1,...,m, the algorithm recursively
derives the distance from the received vector to every codeword generated by a
function b1, ...,b;,0,...,0. In the end, it outputs the distance corresponding to
the full function b4, ..., by, ap, or chooses the value of the free term a, = 0, 1 that
gives the shorter distance for any prefix by, ...,b;. The algorithm requires the
order of 122! operations.

Thus, we need the order of mki?2! operations for decoding all mk vectors
g(X+y(;) +J). Finally, we calculate each vector A;(j), which requires 2! oper-
2

mod has the overall complexity

ations per vector. Therefore, the algorithm GL

B oq ~ mki?2h = O (<s +log g) g log? e) .

14 ACCT2012

This completes our proof for the Hadamard code H(m).

For the code RM (1, m), we can perform Gng)d for the received vector g
and the shifted vector g+ 1, and then combine both lists. Thus, the former
complexity ®,,q is at most doubled, whereas the bound 27% is not changed.
Indeed, the same Johnson bound |L.(g)| < €2 holds for both codes H(m) and
RM (1, m), and can be used for the latter in the same way it was for the former.
O

APPENDIX. One open problem is to refine the estimates used for pairwise
independent random variables in Theorems 1 to 3. In turn, this could relax
restriction (1), inherent in Theorems 1 and 3. Namely, we raise the following

Open Problem. Let E C F3* be an arbitrary subset of size |E| = 2™~ 1(1—¢)
but without the null vector 0, and X C F4" be any I-dimensional space, | < m/2.
We say that X is in error and write Xeyy if |[E N X[> £ |X]|. Maximize the fraction

F(m,e,1) = max number of Xegr
I E number of X

over subsets E. Is f(m,e,1) < 27! for any € € (0,1)?

References

[1] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes, North-Holland, Amsterdam, 1977.

[2] O. Goldreich and L. A. Levin, “A hard-core predicate for all one-way func-
tions”, 2158 ACM Symp. Theory of Computing, Seattle, WA, USA, May 14
- 17, 1989, pp. 25-32.

[3] L. A. Levin, “Randomness and Nondeterminism,” J. Symb. Logic, vol. 58,
pp. 1102-1103, 1993.

[4] O. Goldreich, Foundations of Cryptography, vol. 1, Cambridge, New York,
2001.

[5] L. Trevisan, “Some applications of coding theory in computational com-
plexity”, Quaderni di matematica, vol. 13, pp. 347-424, 2004.

[6] I. Dumer, G. Kabatiansky, C. Tavernier, “List decoding of Reed-Muller
codes of the first order, ” Problems Info. Transmission, vol. 43, no. 3 pp.
46-54, 2007.

