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Abstract

All ternary projective codes of dimension 4 and these of dimension 5 of lengths up
to 15 are classified. Their automorphism groups and weight spectra are determined.
The lest value of the covering radius of ternary codes of dimension 4 and lengths
between 13 and 20 are computed.

I Preliminaries

In this work we investigate ternary projective codes of dimensions 4 and 5. The approach
we have used is to classify all such codes of dimension 4 and the codes of dimension 5 and
lengths up to 15 and to determine some of their basic characteristics like automorphism
groups, weight spectra and covering radius.

All codes considered are ternary and linear. As usual, an [n, k, d] code C is a k-
dimensional subspace of the n-dimensional vector space F n

q over the q-ary field Fq with a
minimum Hamming distance d.

A k-by-n matrix G having as rows the vectors of a basis of C is called a generator
matrix of C.

Let Ai denote the number of codewords of C of weight i. Then the numbers A0, . . . , An

are called the weight spectrum of the code C.
Let C1 and C2 be two linear [n, k]q codes. They are said to be equivalent if the code-

words of C2 can be obtained from the codewords of C1 via a sequence of transformations
of the following types:

(1) permutation of the set of coordinate positions;
(2) multiplication of the elements in a given position by a non-zero element of Fq;
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(3) application of a field automorphism to the elements in all coordinate positions.
An automorphism of a linear code C is a finite sequence of transformations of type

(1)-(3), which maps each codeword of C onto a codeword of C. All the automorphisms
of a code C form a group, which is called the automorphism group Aut(C) of the code.

A coset of the code C defined by the vector x ∈ F n
q is the set x+C = {x+ c | c ∈ C}.

A coset leader of x + C is a vector in x + C of smallest weight.
The greatest of the distances between a vector from the n-dimensional vector space

F n
q over GF (q) and the code C is called the covering radius R(C) of C. The covering

radius of a linear code is equivalent to the weight of the heaviest leader of its cosets.
The function tq[n, k] is defined as the least value of R(C) when C runs over the class

of all linear [n, k] codes over Fq for a given q.

II Codes construction

The first step of our investigation is the classification of the ternary projective codes
of dimensions 4 and 5. A classification of these codes with respect to their minimum
distances using projective geometries can be found in [4]. In our work we have used a
McKay approach [5] for isomorphism rejection.

Let us denote by M the qm × qm − 1

q − 1
matrix of the codewords of the simplex code.

To construct every projective code we use the fact that it is a punctured version of the
corresponding simplex code. In other words the codewords of every projective code C are
obtained by taking some fixed number of the columns of the matrix M . We will say that
the code C is defined by these columns of M .

The main idea using McKay-type approach is to construct recursively new child codes
from parent codes. In our case if a parent code is defined of n columns of the matrix
M the child code will be defined by these columns plus a new column from M . As child
codes will be accepted only those codes that pass a parent test and an isomorphism test.

In the parent test we need a canonical labelling [5] of the coordinates of the codes. The
parent test can be passed by those child codes which last added coordinate is first in the
canonical labelling or is in the same orbit with the first in the canonical labelling coordi-
nate. From the child codes which passed the parents test we take only one representative
from each class of equivalence.

The construction algorithm. Start from an empty set and recursively do the following.
For a given code in the search tree, construct all possible child codes obtained by adding
one coordinate. For each such child, carry out the parent test and, for those who survive
the parent test, carry out isomorph rejection with the isomorphism test among those
codes that come from the same parent.

To calculate the canonical labelling of the coordinates of the codes and the isomorphism
test the algorithm from [2] is used. An advantage of the algorithm for our investigation
is that we have to find an isomorphism only between the child of one parent.



III Classification results

In the list below we present ternary projective codes of dimension 4 of all lengths and of
dimension 5 of lengths up to 15. For each length the common number of the nonequivalent
codes are given. Then the numbers of codes having the corresponding minimum distance
are written as powers of this minimum distance. The complete list with all determined
properties of the codes can be found at http://www.moi.math.bas.bg/∼iliya.

k= 4
n = 4 1 11

n = 5 3 12, 21

n = 6 8 13, 25

n = 7 19 14, 211, 34

n = 8 44 14, 216, 321, 43

n = 9 91 13, 216, 345, 426, 51

n = 10 199 13, 213, 355, 4112, 515, 61

n = 11 401 12, 210, 346, 4174, 5165, 64

n = 12 806 11, 26, 333, 4154, 5448, 6164

n = 13 1504 11, 23, 319, 4102, 5478, 6843, 758

n = 14 2659 11, 22, 39, 453, 5314, 61318, 7950, 812

n = 15 4304 21, 35, 422, 5151, 6941, 72559, 8623, 92

n = 16 6472 32, 49, 557, 6439, 72310, 83478, 9177

n = 17 8846 43, 519, 6153, 71099, 84617, 92937, 1018

n = 18 11127 55, 645, 7356, 82454, 96799, 101466, 112

n = 19 12723 610, 789, 8782, 94582, 106935, 11324, 121

n = 20 13358 716, 8178, 91514, 106893, 114722, 1235

n = 21 12723 828, 9328, 102526, 117860, 121981

n = 22 11127 947, 10528, 113587, 126530, 13435

n = 23 8846 1068, 11763, 124220, 133747, 1448

n = 24 6472 1191, 12977, 133913, 141484, 157

n = 25 4304 12114, 131074, 142764, 15351, 161

n = 26 2659 13127, 141014, 151462, 1655, 171

n = 27 1505 14127, 15801, 16569, 177, 181

n = 28 807 15113, 16520, 17171, 183

n = 29 402 1690, 17274, 1838

n = 30 201 1766, 18127, 198

n = 31 94 1845, 1947, 202

n = 32 47 1926, 2020, 211

n = 33 23 2015, 218

n = 34 12 219, 223

n = 35 6 225, 231



n = 36 4 233, 241

n = 37 2 242

n = 38 1 251

n = 39 1 261

n = 40 1 271

k= 5
n = 6 4 13, 21

n = 7 15 18, 27

n = 8 61 119, 239, 33

n = 9 277 144, 2161, 371, 41

n = 10 1439 191, 2525, 3702, 4120, 51

n = 11 8858 1199, 21512, 33886, 43229, 531, 61

n = 12 62311 1401, 24009, 314807, 436060, 57029, 65

n = 13 459828 1806, 29796, 345215, 4199735, 5199532, 64744

n = 14 3346151 11504, 222016, 3119254, 4723620, 51891164, 6588357, 7236

n = 15 23246482 12659, 245253, 3279897, 42061818, 58919464, 611302236, 7635151, 84

IV Least covering radius of some ternary linear codes

of dimension 4

The last step of this investigation is the determination of some of the unknown values of
the function t3[n, 4]. At table with bounds on the function t3[n, k] for codes of lengths up
to 27 is given in [1]. Later the values of t3[10, 4] and t3[12, 4] are determined in [6]. Here
we extend the table from [1] for codes of lengths up to 40 and the row for dimension 4 is
the following:

n 5 6 7 8 9 10 11 12 13
1 1 2 2 3 4 4 5 5-6

n 14 15 16 17 18 19 20 21 22
5-6 6-7 6-8 7-9 7-9 8-10 8-11 9-11 10-12

n 23 24 25 26 27 28 29 30 31
10-13 11-13 11-14 12-15 12-15 13-16 13-17 14-17 15-18

n 32 33 34 35 36 37 38 39 40
15-19 16-19 16-20 17-21 17-21 18-22 19-23 19-23 20-24

The determination of the covering radii of the ternary codes of dimensions 2 and 3
in [1] showed that for all lengths up to qm−1

q−1
for m = 2, 3 the least covering radius is

reached by a projective code. That is why we have first tested all projective codes of
the given length. If there are no codes with covering radius equal to the lover bound
for t3[n, k], we have to test codes with repeated coordinates. To determine how many
repeated coordinates there are in the generator matrix of the code with the searched



covering radius we have used the lower bound for concatenation of codes from [3]. Let C1

be an [n1, k1] and C2 be an [n2, k2] code with k1 ≤ k2 and generator matrices G1 and G2

respectively. We define the generator matrix of the code C as [G′
1|G2], where G′

1 is G1

with k2 − k1 rows of zeros added. Then C is an [n1 + n2, k2] code, for which the covering
radius satisfies R(C) ≥ R(C1) + R(C2).

Let the [n, 4] code C have repeated coordinates and let them be on the first s places
of the generator matrix of C. Then we can consider C as a concatenation of codes C1

which is an [s, 1] code and C2 which is an [n− s, 4] projective code. The covering radius
of C1 is R(C1) = b2s

3
c and for the code C2 we take a code with the least covering radius

R(C2) = t3[n − s, 4]. This way we can determine the maximum number of the repeated
coordinates of C. Having classified all projective [n − s, 4] codes we extend them with
the necessary numbers of equivalent coordinates to get the codes C and then use the
algorithm from [2] to get only the nonequivalent ones.

In the search for codes with a given covering radius we use the fact that if the code is in
a systematic form, a vector of each coset can be found by generating all vectors of the form
(0, . . . , 0︸ ︷︷ ︸

k

, a), a ∈ F n−k
3 . Then we only test words of this form and with wt(a) ≥ t3[n, 4]. If

during the search we get a coset lieder with this weight we break the process and report
that the code with the given covering radius is found. If we get a coset lieder with weight
greater than t3[n, k] we stop the search and report that the covering radius of the code is
greater than the searched value.

This way were determined the least values of the covering radius of ternary linear
codes of dimension 4 and lengths between 13 and 20 and they are the following t3[13, 4] =
t3[14, 4] = 6, t3[15, 4] = 7, t3[16, 4] = t3[17, 4] = 8, t3[18, 4] = t3[19, 4] = 9, t3[20, 4] = 10.

Remark 1. There is a unique projective [19, 4] code with the least covering radius
9. It has the following weight enumerator A0 = 1, A9 = 2, A11 = 12, A12 = 16, A13 =
30, A14 = 14, A15 = 2, A17 = 4

Remark 2. In all cases where the exact values of the function t3[n, k] were determined
(i.e. 13 ≤ n ≤ 20) there are projective codes which have covering radius equal to the least
one.
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