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Abstract. Consider a combinatorial design D with a full automorphism
groupGD. The automorphism groupG of a design resolutionR is a subgroup
of GD. This subgroup maps each parallel class of R into a parallel class of
R. Two resolutions R1 and R2 of D are isomorphic if some automorphism
from GD maps each parallel class of R1 to a parallel class of R2. If GD is
very big, the computation of the automorphism group of a resolution and the
check for isomorphism of two resolutions might be difficult. Such problems
often arise when resolutions of geometric designs (the designs of the points
and t-dimensional subspaces of projective or affine spaces) are considered.

For resolutions with given automorphisms these problems can be solved
by using some of the conjugates of the predefined automorphisms. The
method is explained in the present paper and an algorithm for construction
of the necessary conjugates is presented.
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1. Introduction.

1.1. Definitions and notations. Let V = {Pi}
v
i=1 be a finite set of

points, and B = {Bj}
b
j=1 a finite collection of k-element subsets of V , called

blocks. D = (V,B) is a 2-design with parameters 2-(v,k,λ) if any 2-subset of V is
contained in exactly λ blocks of B. A parallel class is a partition of the point set
of the design by blocks. A resolution of the design is a partition of the collection
of blocks by parallel classes.

A t-spread in PG(n, q) is a set of distinct t-dimensional subspaces which
partition the point set. A t-parallelism is a partition of the set of t-dimensional
subspaces by t-spreads. Usually 1-spreads (1-parallelisms) are called line spreads
(line parallelisms) or just spreads (parallelisms). There can be line spreads and
parallelisms if n is odd.

The incidence of the points and t-dimensional subspaces of PG(n, q) de-
fines a 2-design. There is a one-to-one correspondence between the t-parallelisms
of PG(n, q) and the resolutions of the design of its points and t-dimensional sub-
spaces.

1.2. Computer-aided research on parallelisms. Research on t-spreads
and t-parallelisms is motivated by their various relations to translation planes [4],
[8] and by some of their practical applications in coding theory [5] and cryptog-
raphy [16].

Since not many different types of parallelisms are known, computer-aided
constructions are of particular interest. A great deal of the computer-aided in-
vestigations imply classifications of t-parallelisms with predefined automorphism
groups [12], [13], [14], [15], [17], [18], [20], [19], [21], [22], [23]. In all these works
the authors use the normalizer of the constructive automorphism group in order
to filter away isomorphic parallelisms. A summary of this method follows.

1.3. Isomorphism of resolutions which possess one and the same

predefined automorphism group. Let D be a combinatorial design with a
full automorphism group GD. Consider resolutions of D with a predefined auto-
morphism group Gc. We have to check if there is some permutation ϕ ∈ GD such
that it maps a resolution with Gc to another resolution with Gc. Let R and R′

be two resolutions with Gc, such that

R′ = ϕR.

Let α ∈ Gc. Then ϕR = αϕR and thus

R = ϕ−1αϕR,
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namely ϕ−1αϕ is also an automorphism of R. That is why R is invariant both
under Gc and under ϕ−1Gcϕ. If

ϕ−1Gcϕ = Gc,

then ϕ is in the normalizer N(Gc) of Gc in GD, which is defined as

N(Gc) = {g ∈ GD | gGcg
−1 = Gc}.

If ϕ is not in the normalizer, then ϕ−1Gcϕ is a conjugate subgroup and since ϕ is
not an automorphism of R, there must exist an automorphism ψ of R such that

ϕ−1Gcϕ = ψGcψ
−1.

Then Gc = ϕψGcψ
−1ϕ−1 and therefore ϕψ ∈ N(Gc). Since ϕψR = ϕR, to

establish isomorphism of two resolutions R and R′ with Gc it is enough to check
if there is a permutation of N(Gc) which maps R to R′.

1.4. Subject of this paper and applicability of the presented

methods. There exist general methods for finding the automorphism group of
combinatorial structures, the most popular being those of Leon [9] and McKay
[10]. There are, however, cases when the method by which the structures are con-
structed allows determining the automorphism group by some algorithm which is
not general, but only applicable with this particular construction. The present
paper offers such a construction-related method. Namely, it considers the compu-
tation of the orders and generating sets of the automorphism groups of resolutions
which were constructed with some predefined automorphisms and by using the
normalizer to filter away isomorphic solutions (see 1.3).

If some element of N(Gc) maps the resolution R to itself, it is its auto-
morphism. So by the isomorphism test described in 1.3. we also obtain some of
the automorphisms of R. It might have, however, more automorphisms, which
are not from N(Gc). The full automorphism group G is not determined in [12],
[13], [14], [15], and [17]. Here in section 2 we present the algorithm used to
compute the order of the full automorphism groups of parallelisms of PG(3, 4)
(|GD|=213 · 34 · 52 · 7 · 17) with automorphisms of orders 7 and 5 [20], [21] and of
parallelisms of PG(3, 5) (|GD|=29 · 32 · 56 · 13 · 31) with automorphisms of orders
13 and 3 [19], [22].

The method we describe is based on the usage of conjugates. Many papers
deal with the problem of determining the conjugacy classes of a big group and of
finding one representative of each conjugacy class [1], [2], [3], [6], [7], [11], [24]. But
for the problem considered here, we do not need representatives of all conjugacy
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classes. We are interested in the generation of all representatives of one and the
same conjugacy class. Such a generation is a function implied in the computer
algebra software system GAP. The storage of all conjugates, however, needs a lot
of memory. This makes its usage impossible if |GD| is rather big.

A further study of the problem we consider shows that we do not actually
need all conjugates, but only a much smaller part of them (necessary set). Sec-
tion 2 defines the necessary set of conjugates for computing the automorphism
group of a resolution R invariant under Gc and shows how this set can be gener-
ated by a simple algorithm.

The isomorphism test described in 1.3. is only applicable if R and R′

are invariant under one and the same subgroup of GD and cannot be used if R
and R′ are invariant under conjugate subgroups of GD. Such a case arises, for
instance, when we consider dual parallelisms of parallelisms with a constructive
automorphism.

Section 3 explains how the necessary set of conjugates constructed as
shown in section 2 can be used to determine if a resolution R with given automor-
phisms is isomorphic to another resolution R′. The method was used to determine
the pairs of duals of regular parallelisms of PG(3, 5) with automorphisms of order
3 [22].

The paper ends with several comments given in Section 4.

2. The full automorphism group of a resolution with given

automorphisms.

2.1. Conjugate approach. Consider a resolution R which is invariant
under Gc. Let R have an automorphism ψ /∈ N(Gc). Then it is invariant under
ψGcψ

−1. So we can first find all conjugate subgroups under which the resolution
is invariant. The automorphism group which they generate, however, may still
not be the full automorphism group of R.

Let GN+C be the group of automorphisms of R containing all elements of
N(Gc) which are automorphisms of R and all conjugates of Gc under which R is
invariant. Let α be an automorphism of R such that

α /∈ GN+C .

Then R is invariant under α−1Gcα. It follows from the definition of GN+C that

α−1Gcα ∈ GN+C .

This means that there exists some β ∈ GN+C such that

α−1Gcα = β−1Gcβ
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and Gc = αβ−1Gcβα
−1, namely αβ−1 ∈ N(Gc). Let αβ−1 = γ ∈ N(Gc). Then

α = γβ,

where γ ∈ N(Gc) and β ∈ GN+C . That is why we can determine the automor-
phism group of a resolution by the following steps:

1. Find GN – the subgroup of N(Gc) under which R is invariant. This can
be done by checking for each automorphism of N(Gc) if it preserves the
resolution or not.

2. Check if R is invariant under some conjugate subgroup of Gc.

3. If no conjugate subgroup of Gc preserves R, then the full automorphism
group of R is GN and in this case the next three steps are omitted.

4. Find the group GN+C generated by the generators of GN and the conjugate
subgroups of Gc which preserve R

5. For each β ∈ GN+C and each γ ∈ N(Gc) check if βγ is an automor-
phism of R

6. Find the full automorphism group G from GN+C and the automorphisms
found in step 5.

If Gc is a cyclic group of prime order, then each conjugate of subgroup Gc is
generated by one of the conjugates of a given element c ∈ Gc. Thus the upper
steps 2, 3 and 4 can be replaced by the following ones:

2. Take an element c ∈ Gc and check if R is invariant under some of its
conjugates.

3. If no conjugate of c preserves R, then the full automorphism group of R is
GN and in this case the next three steps are omitted.

4. Find the group GN+C generated by the generators of GN and the conjugates
of c which preserve R

If Gc is not a cyclic group of prime order, we can take any of its subgroups
of prime order. Applying the above steps to it yields the full automorphism group
of the resolution. To do this we need all conjugates of a prime order permutation
c ∈ GD.
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2.2. Construction of conjugates. Let

Sg = {g1, g2, . . . gm}

be a generating set of GD. Denote by Cc the centralizer of c in GD, and by n the
number of conjugates of c ∈ GD, where

n = |GD|/|Cc|.

We construct the conjugates in several rounds. Before round 1 there is one
element in the set of the constructed conjugates, the element c. The conjugates
constructed at round r − 1 are extended at round r, i.e. their conjugates are
constructed using Sg. The algorithm terminates after round r if no new conjugate
is found at this round.

Algorithm 1. Construction of all conjugates

This algorithm constructs the set Sall of all n conjugates. At round r it
performs the following:

for each δ which was added to Sall at round r − 1

{

for j = 1, 2, . . . m

{

construct δj = g−1
j δgj

if δj /∈ Sall then add δj to Sall.

}

}

Lemma 1. Algorithm 1 generates all conjugates of c ∈ GD, where c is of

prime order.

P r o o f. Let α−1cα be a conjugate of c and let α = gi1gi2 . . . gis .
Then g−1

i1
cgi1 will be added to Sall at round 1, g−1

i2
g−1
i1
cgi1gi2 at round 2 and

g−1
is
. . . g−1

i2
g−1
i1
cgi1gi2 . . . gis at round s. �

2.3. Conjugates that may not be constructed. Our aim is to find
the full automorphism group G of the resolution R with an automorphism c of
prime order p by the method presented above. We actually need GN+C . For that
purpose we have to construct the group generated by all conjugates of c which
are automorphisms of R.
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Let δ be a conjugate of c. Since δk preserves R if and only if δ preserves
it, the set of the conjugates we need may contain only one of the powers of each
conjugate. We next notice that c−iδci is an automorphism of R if and only if δ
is. Based on these two observations, we can construct only a set S of conjugates
which we call a necessary set.

Denote by necessary set of conjugates of c a set of conjugates such that:

• if δ is a conjugate of c and δ /∈ S, then ∃ k, i such that c−iδkci ∈ S.

• if δ ∈ S, then c−iδkci /∈ S for k = 2, . . . p− 1, i = 1, . . . p− 1.

Lemma 2. Consider a resolution R with an automorphism c of prime

order p. The group generated by all conjugates of c which are automorphisms of

R can be found using a necessary set S of conjugates of c.

P r o o f. If δ preserves R and δ /∈ S, then by the definition of the
necessary set ∃ k, i such that c−iδkci ∈ S. If δ preserves R, then c−iδkci pre-
serves it too. Since c is an automorphism of R, δk is an automorphism too, and

δ ∈
〈

c−iδkci
〉

. �

The check if a conjugate preserves R or not is quite complex. Therefore
it is very helpful to use the smaller necessary set instead of the set of all conju-
gates. If we have constructed the set Sall of all conjugates by Algorithm 1, then
a necessary set of conjugates S can be obtained by a simple sequential check, i.e.

S = ∅

for each δ ∈ Sall
{

if New(δ) add δ to S.

}

The function New returns true if c−iδkci /∈ S for each i = 0, 1, . . . , p − 1
and each k = 1, . . . , p− 1.

Algorithm 1, however, needs a lot of memory. In cases when there is not
enough memory for Algorithm 1, Algorithm 2 presented below can be used.

Algorithm 2. Construction of a necessary set of conjugates

This is a modification of Algorithm 1. It constructs a necessary set of
conjugates S ⊆ Sall. At round r it performs the following:
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for each δ which was added to S at round r − 1

{

for j = 1, 2, . . . ,m

{

for i = 0, 1, . . . , p− 1

{

construct δi,j = g−1
j c−iδcigj (1)

if New(δi,j) then add δi,j to S.

}

}

}

The function New returns true if c−iδki,jc
i /∈ S for each i = 0, 1, . . . , p− 1

and each k = 1, . . . , p− 1.

Lemma 3. Algorithm 2 generates a necessary set S of conjugates of c ∈
GD, where c is of prime order p.

P r o o f. Algorithm 2 does not save all conjugates (it only saves a neces-
sary set), but actually constructs all of them. To ensure that all conjugates will
be constructed at round r we need to extend all (not only the saved) conjugates
constructed at round r − 1.

Let δ = α−1cα be a conjugate of c. Then

δ2 = α−1cαα−1cα = α−1c2α.

Therefore

δk = α−1ckα.

This means that δ and δk will be extended in the same way at each round.
Thus the presence of only one power of each conjugate in the necessary set does
not lead to a loss of conjugates.

Let the conjugate δ = α−1cα be saved at round r− 1. Then it is possible
that the conjugate

ρ = c−iα−1ckαci

was constructed but not saved. Row (1) in the algorithm ensures that

c−iα−1cαci = ρ1−k

is extended at round r. Since ρ and ρ1−k are further extended in the same way,
there is no loss of conjugates. �
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3. Isomorphism of resolutions invariant under conjugate sub-
groups.

3.1. Conjugate approach. Let R be a resolution invariant under Gc

and let R′ be a resolution, such that

R = ϕR′.

Our aim is to find ϕ. If GD is rather big, looking for a ϕ ∈ GD is too slow. Let
Gc be a cyclic group of order p and let c ∈ Gc. Then ϕR′ = cϕR′ and thus

R′ = ϕ−1cϕR′,

namely R′ is invariant under ϕ−1cϕ.

Suppose we can find all conjugates of c under which R′ is invariant, and
in particular, we can find ϕ−1cϕ. Suppose we can also find some ψ ∈ GD such
that

ϕ−1cϕ = ψ−1cψ.

Then c = ϕψ−1cψϕ−1 and therefore

ϕψ−1 ∈ N(Gc).

Let ϕψ−1 = γ ∈ N(Gc). Then

ϕ = γψ.

That is why we can determine if R and R′ are isomorphic by the following
steps:

1. Find all conjugates of c under which R′ is invariant.

2. If no conjugate of c preserves R′, it is not isomorphic to R and the algorithm
stops.

3. For each conjugate δ of c which preserves R′

• find ψ such that δ = ψ−1cψ.

• for each γ ∈ N(Gc) check if γψ maps R′ to R. If such a map is found,
R and R′ are isomorphic and the algorithm stops.

4. If no mapping of R′ to R is found, the two resolutions are non isomorphic
and the algorithm stops.
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If Gc is not a cyclic group of prime order, we can take any of its subgroups
of prime order and apply the above steps. The next question is whether it is
possible to use the necessary set S of conjugates at step 1 in this case.

3.2. Using the necessary set of conjugates. If δ preserves R′, δk also
does and vice versa. That is why no problem arises from the fact that if δ is in
S, then δk is not. It is possible, however, that c−iδci /∈ S is an automorphism of
R′ while δ ∈ S is not. If we have constructed the necessary set S of conjugates of
c, we can implement step 1 in the following way:

Sa = ∅

for each δ ∈ S

{

for i = 0, 1, . . . , p− 1

{

construct δi = c−iδci

if Aut(δi) then add δi to Sa.

}

}

where Sa is a subset of the set Saut of all conjugates under which R′ is
invariant, such that

• if δ ∈ Saut and δ /∈ Sa, then ∃ i such that δi ∈ Sa.

• if δ ∈ Sa, then δi /∈ Sa for all i = 2, . . . , p− 1.

The function Aut returns true if δi is an automorphism of R′.

The above described isomorphism test implies that for each δ ∈ Sa we can
find ψ such that

δ = ψ−1cψ.

This problem can be solved easily if during the generation of the necessary set
of conjugates some additional information is saved when each new conjugate is
added. Namely, if the conjugates are saved in an array, then when we add the k-th
conjugate δi,j = g−1

j c−iδcigj we can also save the number of the father-conjugate
δ and the numbers i and j. Then we can find ψ by a simple recursive function:
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FindMult(int k)
{

if(j[k]=0) assign ψ = e
else
{

FindMult(father[k])
construct ψ = ψci[k]gj[k]

}
}

where e is the identity permutation.

4. Concluding remarks. This paper presents just one possible way to
compute the full automorphism group of a resolution R with given automorphisms
and to establish if it is isomorphic to another resolution of the same design. The
method is suitable for resolutions of designs with big automorphism groups. It
was developed and proved to be useful in connection with problems concerning
the classification of parallelisms of PG(3, 4) and PG(3, 5) with predefined auto-
morphisms [20], [19], [21], [22]. The advantages of the present method in these
cases are based on the fact that the considered resolutions possess predefined au-
tomorphisms and this algorithm uses the predefined groups, while general purpose
algorithms do not.

The method implies a construction of the necessary set of conjugates of
a given automorphism of prime order. Let us count the number nn of conjugates
in a necessary set S:

nn = nc + nr

where nc is the number of conjugates in S such that Gc is in their centralizer and
nr of the rest. Let us construct from each conjugate δ ∈ S the conjugates

c−iδci

for i = 0, 1, . . . , p− 1. This way we will obtain a set Sa of

nc + pnr

conjugates. Consider a conjugate

δ = ψ−1cψ

from Sa. We can obtain from it the conjugates

ψ−1ckψ
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for k = k1, k2, . . . , kh, where h is the number of the positive powers of c which are
in one conjugacy class with c. This way we obtain all n conjugates of c and

n = h(nc + pnr).

Since nc is relatively very small compared to nr, the number of conjugates
in a necessary set is almost hp times smaller than the number of all conjugates in
the class.

In conclusion it can be noted that Algorithm 2 is easy to implement and
can be applied in cases different from the resolutions automorphism problem for
which it was initially developed. It can be used in cases when all conjugates are
needed and other algorithms are not applicable because of lack of memory. Each
conjugate in a necessary set yields directly ph or h other conjugates and in this
way all conjugates can be easily used.
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